На правах рукописи

Whey-

ПИКУЛИН Кирилл Владимирович

ОБОСНОВАНИЕ ПРОЦЕССА СПЕКАНИЯ ВОЛЬФРАМИТА С КАРБОНАТАМИ НАТРИЯ И КАЛИЯ В ТЕХНОЛОГИИ ПЕРЕРАБОТКИ НИЗКОКАЧЕСТВЕННЫХ КОНЦЕНТРАТОВ

Специальность 05.16.02 – Металлургия черных, цветных и редких металлов

Автореферат диссертации на соискание ученой степени кандидата технических наук

Екатеринбург – 2020

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте металлургии Уральского отделения Российской академии наук

Научный руководитель	доктор технических наук Селиванов Евгений Николаевич
Официальные оппоненты:	Мальцев Геннадий Иванович, доктор технических наук, АО «Уралэлектромедь», главный специалист исследовательского центра, г. Верхняя Пышма
	Сабирзянов Наиль Аделевич, доктор технических наук, Федеральное государственное бюджетное учреждение науки Институт химии твердого тела Уральского отделения Российской академии наук, заведующий лабораторией химии гетерогенных процессов, г. Екатеринбург
Ведущая организация	ФГАОУ ВО «Южно-Уральский государственный университет (национальный исследовательский университет)», г. Челябинск

Защита состоится «13» ноября 2020 г. в 14:00 на заседании диссертационного совета Д 004.001.01 при Федеральном государственном бюджетном учреждении науки Институте металлургии Уральского отделения Российской академии наук по адресу: 620016, г. Екатеринбург, ул. Амундсена, 101.

С диссертацией можно ознакомиться в Центральной научной библиотеке Уральского отделения Российской академии наук и на сайте Федерального государственного бюджетного учреждения науки Института металлургии Уральского отделения Российской академии наук http://www.imet-uran.ru.

Автореферат разослан «___» ____ 2020 г.

Ученый секретарь диссертационного совета, доктор технических наук

Дмитриев Андрей Николаевич

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования. В промышленной практике переработки вольфрамитовых получила концентратов распространение включающая спекание кальцинированной технология, его с содой С последующим водным выщелачиванием Na₂WO₄ и осаждением CaWO₄, используемым в производстве сплавов (ферросплавов) и химических реагентов. Базовым элементом технологии является термическая обработка смеси концентрата с содой, селитрой и оборотными материалами, обеспечивающая формирование водорастворимого вольфрамата натрия. Такой способ применим к марочным концентратам, содержащим более 45 % вольфрама. Ухудшение качества рудного сырья и выделяемых из него концентратов, связанное со снижением содержания вольфрама в рудах и тонким взаимным прорастанием минералов, предопределяет значимость изысканий по совершенствованию металлургических технологий.

Сведения по теории металлургических процессов, охватывающие вопросы механизма и кинетики реакций с участием поликатионных оксидов определяют параметры переработки вольфрамитов, отличающихся изоморфным замещением железа на марганец в ряду непрерывных твердых растворов. Повышенная доля примесей в реальных, в том числе низкокачественных и некондиционных, концентратах оказывает влияние на последовательность и полноту протекания реакций, состав и количество формируемых продуктов, что отражается на результатах производства. Снижение качества вольфрамитовых концентратов сопряжено с примесями сульфидов железа, меди и молибдена, а также кварца и магнетита.

Актуальность исследования обоснована необходимостью расширения сведений по фазообразованию и кинетике реакций при термообработке низкокачественных вольфрамитовых концентратов в смесях с карбонатами натрия и калия для обеспечения высоких показателей по извлечению целевого металла.

Степень разработанности темы исследования. Базовые реакции между вольфрамитом и карбонатом натрия, их термодинамические характеристики, составы образующихся продуктов, а также термические эффекты при нагревании реагентов широко представлены в литературных источниках. На основе теоретических данных созданы технологии переработки вольфрамитовых концентратов. Известны сведения, касающиеся использования K₂CO₃ для перевода вольфрама в водорастворимые соединения при переработке концентратов. Однако этих данных недостаточно для обоснования технических решений по переработке низкокачественных концентратов.

Цели диссертационной работы – развитие теоретических основ взаимодействия вольфрамита с карбонатами щелочных металлов и обоснование технологии переработки низкокачественных концентратов.

Для достижения цели поставлены следующие задачи:

– оценка состава и структуры монокристаллического вольфрамита, а также концентратов различного качества;

– термодинамическое моделирование фазообразования при нагреве концентратов с карбонатами щелочных металлов;

– уточнение механизма и кинетики реакций в ходе термообработки смесей вольфрамита с карбонатами щелочных металлов в окислительной среде;

– моделирование и обоснование параметров пирохимической технологии переработки низкокачественных вольфрамитовых концентратов.

Научная новизна работы

1. Подтверждены флюктуации состава монокристаллического вольфрамита.

2. Установлено снижение соотношения Fe/Mn в монокристаллическом вольфрамите при его нагреве с карбонатом натрия (калия), что позволило судить о большей реакционной способности Fe_xMn_{1-x}WO₄ с повышенной долей железа.

3. Методами термодинамического моделирования установлено влияние температуры, количества Na₂CO₃ и K₂CO₃ и качества вольфрамитовых концентратов на полноту перевода вольфрама в водорастворимые соединения.

4. Установлен двухстадийный механизм и определены кинетические параметры взаимодействия Fe_xMn_{1-x}WO₄ с Na₂CO₃ и K₂CO₃ при нагреве в окислительной среде (воздух), предположен переход процесса ИЗ автокаталитический диффузионного В режим за счет формирования легкоплавких фаз и эвтектик.

Теоретическая и практическая значимость работы заключается в обосновании параметров процесса спекания смесей вольфрамитового концентрата с карбонатами щелочных металлов и технологии переработки низкокачественного сырья:

– установлены корреляционные зависимости, связывающие основные параметры (температура, расход реагентов и др.) термообработки смесей концентрата с карбонатами щелочных металлов и показатели, достигаемые при выщелачивании продуктов спекания (степень перехода вольфрама в раствор);

– выявлено распределение основных и сопутствующих элементов по циклу пирохимической переработки концентрата;

– показана большая эффективность использования K₂CO₃, в сравнении с Na₂CO₃, при термообработке низкокачественных концентратов, что позволило

вести процесс без разубоживания шихты оборотными материалами (кеки выщелачивания);

– предложена технология переработки низкокачественных (менее 26 % W) концентратов, включающая их обжиг, спекание с карбонатами щелочных металлов, выщелачивание и осаждение CaWO₄, обеспечивающая извлечение не менее 95 % вольфрама в товарный продукт.

Методология И методы исследования. В работе использованы современные методы химического (спектрометры Spectroflame Modula S и Bruker AXS S4 Explorer), рентгенофазового (дифрактометры Bruker D8 Advance и XRD 7000 С Shimadzu), (Netzsch STA 449 C) термического И микрорентгеноспектрального (Oxford INCA Energy 350 X-max 80) анализов. Идентификация фаз по рентгенографическим данным проведена с использованием базы данных PDF-2, а анализ данных – с использованием программного обеспечения Fullprof. Расчет кинетических параметров осуществлен по программе Netszch Thermokinetics 3.0. Термодинамическое моделирование проведено с использованием программного комплекса HSC Chemistry 6.12.

Моделирование процессов выполнено с привлечением методов математического планирования экспериментов путем термообработки смесей концентрата с карбонатами щелочных металлов в лабораторной (электропечь полупромышленной (CHO-8,5.17.5/10) ПМ-1,0-7) и муфельных печах. Выщелачивание продуктов спекания проведено в термостатированных лабораторном (200 см³) и укрупненном (6300 см³) агитаторах.

Положения, выносимые на защиту

1. Модельные представления о механизме процессов и кинетике реакций при термохимическом взаимодействии вольфрамита с карбонатами натрия и калия.

2. Технология переработки и параметры процесса спекания низкокачественных вольфрамитовых концентратов с карбонатами щелочных металлов.

Достоверность полученных результатов базируется на использовании для экспериментов современного оборудования и установок, входящих в центр коллективного пользования «Урал-М», а также обновляемых баз данных (ICDD PDF 2 и 4) и общепринятых методик экспериментов.

Апробация работы

Основные результаты работы доложены и обсуждены на международных научно-практических конференциях и конгрессах: ХХ Международная научно техническая конференция «Научные основы и практика переработки руд и техногенного сырья», 15-16 апреля, 2015, Екатеринбург, Россия; Научно практическая конференция «Перспективы развития металлургии и

машиностроения завершенных фундаментальных с использованием исследований НИОКР», 03-05 2015. Екатеринбург, И июня, Россия: Международная научно практическая конференция «Инновации в комплексной переработке минерального сырья», 21-22 января, 2016, Алматы, Казахстан; Международная научно практическая конференция «Рений, вольфрам, молибден – 2016. Научные исследования, технологические разработки, промышленное применение», 24-25 марта, 2016, Москва, Россия; Конгресс с международным участием и Конференция молодых ученых «Фундаментальные исследования и прикладные разработки процессов переработки и утилизации техногенных образований», 05-09 июня, 2017, Екатеринбург, Россия; XXI Менделеевский съезд по общей и прикладной химии, 09-13 сентября, 2019, Санкт Петербург, Россия; Международная научно практическая конференция «Материаловедение и металлургические технологии», 1-3 октября, 2019, Челябинск, Россия.

Личный вклад автора. Изложенные в работе результаты получены лично автором или при его непосредственном участии. Автором выполнены: литературный обзор, структурный анализ исходных образцов, термодинамическое моделирование процессов, оценка кинетики реакций по данным термоанализа смесей вольфрамита с реагентами, лабораторные и укрупненные эксперименты по термообработке смесей вольфрамсодержащих материалов с карбонатами щелочных металлов и выщелачиванию продуктов, анализ и обобщение полученных результатов, подготовка публикаций.

Публикации. По теме диссертации опубликовано 14 научных работ, в том числе 7 статей – в рецензируемых научных журналах из перечня ВАК РФ, и 7 публикаций – в прочих журналах и сборниках научных трудов.

Связь диссертации с планами НИР. Исследование выполнено в рамках Комплексной программы Уральского отделения РАН № 0396-2018-0015 (проект № 18-5-5-42, 2018-2020 гг.).

Соответствие диссертации научной специальности. Диссертационная работа соответствует паспорту научной специальности 05.16.02 – Металлургия черных, цветных и редких металлов п. 2 «Твердофазные процессы в металлургических системах», п. 3 «Термодинамика и кинетика металлургических процессов», п. 4 «Металлургические системы и коллективное поведение в них различных элементов», п. 10 «Твердофазные процессы в получении черных, цветных и редких металлов», п. 11 «Пирометаллургические процессы в получении черных, п. 13 «Гидрометаллургические процессы и агрегаты».

Объем и структура работы. Работа состоит из введения, четырех глав, заключения, изложена на 118 страницах машинописного текста, содержит 43 рисунка, 29 таблиц, список литературных источников из 103 наименований, 4 приложения.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность исследования, дана общая характеристика работы, сформулированы цели и задачи, показана степень разработанности темы, научная новизна, теоретическая и практическая значимость, проведена оценка достоверности результатов.

В первой главе, являющейся литературным обзором, выполнено обобщение существующих способов переработки вольфрамитовых концентратов. Описан реализованный в промышленном масштабе способ, включающий спекание (1073-1173 К) концентрата с кальцинированной содой, последующее выщелачивание полученного спека водой и осаждение CaWO₄. Отмечено, что для предотвращения перехода реакционной массы в жидкое состояние, вследствие плавления Na₂WO₄ ($T_{пл} = 971$ К), исходную шихту разубоживают оборотными материалами (кеками выщелачивания), что в значительной степени снижает показатели по производительности агрегатов.

Анализ литературы позволил выделить ряд способов совершенствования процесса спекания, основанных на изменении реагентного и температурного режимов. Предлагается вести процесс в нитратно-карбонатном расплаве и снизить температуру до 723-773 К, тем самым предотвратив расплавление образованного вольфрамата, однако, не исключив агрессивного воздействия на футеровку агрегатов и образования экологически вредных оксидов азота. Другим, более эффективным, является способ, основанный на замене Na₂CO₃ на K_2CO_3 . В ходе термохимического взаимодействия на смесь концентрата с K_2CO_3 , формируют вольфрамат калия, который обладает более высокой температурой плавления (1196 K), что препятствует образованию жидкой фазы. Но этот процесс недостаточно изучен, в особенности применительно к переработке низкокачественных концентратов, требует создания технологических основ и сопоставительной оценки с известными решениями.

На основании анализа научно-технической литературы обосновано направление работы, включающее развитие представлений о взаимодействии вольфрамита с карбонатами щелочных металлов в приложении к переработке низкокачественных концентратов.

Во второй главе приведены данные о составе и микроструктуре изучаемых объектов исследования, а также результаты термодинамического моделирования (ТДМ) их взаимодействия с карбонатами натрия и калия.

Методологическая особенность работы состоит в последовательном усложнении состава образцов: от мономинерального вольфрамита к высококачественному (> 60 % WO₃) и, затем, низкокачественному (< 29 % WO₃) концентратам (таблица 1).

Ofnereu		Содержание, мас. %								
Образец	W	Fe	Mn	Si	Mo	S	Al	Cu		
Монокристалл вольфрамита (Акчатау)	61,1	6,10	10,9	0,34	-	-	-	-		
Концентрат 1 (Новоорловский ГОК)	47,6	6,60	10,8	2,60	-	1,20	1,20	0,05		
Концентрат 2 (Калгутинский рудник)	22,9	12,2	3,60	11,6	4,30	10,7	1,40	6,20		

Таблица 1 – Состав исходных образцов

Монокристалл вольфрамита, по данным рентгенофазового анализа (РФА), раствором вольфрамита типа $Fe_{x}Mn_{1-x}WO_{4}$. представлен твердым С использованием полнопрофильного анализа по методу Ритвельда, уточнены параметры элементарных ячеек выявленных вольфрамитов, содержащихся в монокристалле. Для первого из них они составляют: a = 0,4781, b = 0,5733,c = 4982. нм, $\beta = 90,58^{\circ}$, а для второго a = 0,4801, b = 0.5743, c = 0.4988 нм, $\beta = 90,88^{\circ}$. Состав вольфрамитов, определенный по значениям параметров элементарных ячеек, соответствует формулам Fe_{0.5}Mn_{0.5}WO₄ и Fe_{0.3}Mn_{0.7}WO₄, соответственно. По результатам рентгеноспектрального микроанализа (РСМА), в точках локального зондирования (рисунок 1) состав вольфрамита колеблется в пределах, %: 59,0-62,6 W, 9,5-14,7 Mn, 4,7-8,8 Fe. Приведение данных к общепринятой формуле Fe_xMn_{1-x}WO₄ позволяет утверждать о сосуществовании в минерале вольфрамитов двух составов – Fe_{0.5}Mn_{0.5}WO₄ и Fe_{0.3}Mn_{0.7}WO₄, что согласуется с данными РФА.

Концентрат 1, выделенный из руд Новоорловского месторождения, по данным РФА, представлен $Fe_xMn_{1-x}WO_4$, Fe_2O_3 и Al_2SiO_5 . Параметры элементарной ячейки вольфрамита в образце составляют: a = 0,4804, b = 0,5736,c = 0,4981 нм, $\beta = 90,78^{\circ}$. Его состав, с учетом погрешности измерений, соответствует формуле Fe_{0.3}Mn_{0.7}WO₄. Рентгеноспектральным микроанализом (рисунок 2) уточнены составы минералов, формирующих концентрат. Согласно полученным данным, вольфрамит содержит, %: 61,5-62,7 W, 8,8-16,0 Mn, 1,4-7,8 Fe, менее 0,1 % примесей и отвечает формуле Fe_{0,2-0,3}Mn_{0,7-0,8}WO₄, что близко к определенному по данным РФА. Частицы железомарганцевого отнесены алюмосиликата к спессартину. Кальциевый И калиевый алюмосиликаты близки по составу к таким минералам, как анортит и лейцит. Диоксид кремния, помимо ассоциированного в силикатные минералы, выявлен в виде частиц кварца. В поле шлифа обнаружены частицы пирита размером от 12 до 70 мкм. Количество сульфидных частиц невелико, но их присутствие повышает содержание серы в концентрате до 1,2 %.

Рисунок 1 – Микроструктура монокристалла вольфрамита и состав фаз в точках зондирования

- 1 $Fe_{0,2-0,3}Mn_{0,7-0,8}WO_4$;
- $2 SiO_2;$
- 3 FeS₂;
- $4 Fe_2O_3;$
- 5 KAlSi₃O₈;
- $6 Ca[Al_2Si_2O_8]$

Рисунок 2 – Вид частиц концентрата 1 и их состав в точках зондирования

В качестве образца низкокачественного сырья с большим количеством примесей, выбран вольфрамитовый концентрат 2, выделенный из руд Калгутинского месторождения. По данным РФА, на рентгенограмме концентрата выявлены дифракционные линии Fe_xMn_{1-x}WO₄, α-SiO₂, CuFeS₂, FeS₂, MoS₂, ϵ -Fe₂O₃, а также KAlSi₃O₈. Параметры элементарной ячейки вольфрамита во взятом образце составляют: a = 0,4778, b = 0,5735, c = 0,4987 нм и $\beta = 90,58$ °, а его состав соответствует формуле Fe_{0.53}Mn_{0.47}WO₄. Согласно данным РСМА (рисунок 3), в точках локального зондирования крупных (30-110 мкм) и наиболее представительных частиц концентрата, вольфрамит отвечает формуле Fe_{0.5}Mn_{0.5}WO₄ и содержит, %: 59,4-61,4 W, 7,4-9,0 Fe, 6,9-8,0 Mn. Также выявлены частицы вольфрамита крупностью менее 40 мкм, содержащие, %: 59,9-60,3 W, 4,0-5,0 Fe, 10,2-11,3 Mn, и отвечающие формуле Fe_{0,3}Mn_{0,7}WO₄. Частицы кварца имеют размеры не более 80 мкм. В поле шлифа обнаружены частицы халькопирита, пирита и молибденита размером от 15 до 60 мкм. Найдены небольшие фрагменты (до 15 мкм) гематита. Алюмосиликаты близки по составу к ортоклазу.

Рисунок 3 – Вид частиц концентрата 2 и их состав в точках зондирования

С целью предварительного выбора режимов переработки вольфрамита и концентратов, проведено термодинамическое моделирование фазообразования при термообработке смесей вольфрамитового сырья с карбонатами натрия и калия. ТДМ выполнено на 100 кг массы рабочего тела, составленного из вольфрамитового сырья и карбоната натрия (калия). Вводимые в рабочее тело карбонаты и кислород (воздух) взяты в стехиометрически необходимом количестве для образования Na_2WO_4 (K_2WO_4) и Na_2MoO_4 (K_2MoO_4) в случае с низкокачественным концентратом, а также перевода серы – в Na_2SO_4 (K_2SO_4), а оксидов железа и марганца – в высшие степени окисления.

Результаты фазообразования в смесях монокристаллического вольфрамита с карбонатами натрия и калия (рисунок 4) указывают на некоторые отличия в количестве образующихся соединений. Во всем интервале температур имеет место максимальная степень взаимодействия карбонатов натрия (калия) с FeWO₄. Остаточное содержание MnWO₄, в рабочем теле с Na₂CO₃, находится в пределах 0,8-1,0 %. При замене Na₂CO₃ на K₂CO₃ наблюдается изменение полноты взаимодействия карбоната с MnWO₄, содержание которого снижается до 0,5 %, а доля образующегося продукта реакции (K₂WO₄) возрастает. Максимальная степень перехода вольфрама из Fe_xMn_{1-x}WO₄ в Na₂WO₄ (K₂WO₄) достигнута при избытке реагентов в 110 % от стехиометрически необходимого количества. Следует отметить, что доля образующегося феррита щелочного металла ниже при использовании K₂CO₃, и составляет 6,5 %. При использовании Na₂CO₃ количество NaFeO₂ достигает 15 %.

В системе с концентратом 1 (рисунок 5), помимо рассмотренных взаимодействий, образуются силикаты, алюмосиликаты, а также сульфаты натрия (калия). Сера полностью переходит в водорастворимый сульфат натрия (калия) во всем рассмотренном интервале температур. С технологической точки зрения, формирование сульфатов в продуктах термообработки нежелательно даже в небольших количествах, вследствие перехода ионов SO₄²⁻ в раствор в ходе

последующего водного выщелачивания и загрязнения серой осаждаемого CaWO₄.

Рисунок 5 – Изменение количества равновесных фаз от температуры (а, б) и степени перехода элементов (в, г) в щелочные соединения в смесях концентрата 1 с Na₂CO₃ (а, в) и K₂CO₃ (б, г)

В температурном интервале 873-1273 К происходит переход оксидов кремния в NaAlSiO₄ (KAlSiO₄). Замена Na₂CO₃ на K₂CO₃, взятых в стехиометрическом количестве, не меняет доли образующихся алюмосиликатов.

Степень перехода кремния в водорастворимый силикат натрия (T = 873-1273 K) существенно выше, чем в силикат калия. Для максимального перевода вольфрама в Na₂WO₄ и K₂WO₄ требуется 30 и 10-процентный избыток Na₂CO₃ и K₂CO₃, соответственно. При этом, степень перехода оксида кремния в водорастворимый силикат в системе с Na₂CO₃ составляет 56 %, в то время как при использовании K₂CO₃ – только 6,7 %.

Согласно данным ТДМ, нагрев предварительно обожженного (до 1,0 % S) вольфрамитового концентрата 2 с Na_2CO_3 (K_2CO_3) в воздушной среде (рисунок 6) сопровождается формированием Na_2WO_4 (K_2WO_4) и Na_2MoO_4 (K_2MoO_4), а также оксидов марганца и железа различной степени окисленности. Взаимодействие остаточных сульфидов (Cu_2S , FeS) с Na_2CO_3 или K_2CO_3 в окислительной среде протекает с образованием сульфатов и оксидов. Однако, в связи с незначительной долей в обожженном концентрате Cu_2S и FeS, образование сульфатов натрия (калия) практически не влияет на количество основного продукта – Na_2WO_4 (K_2WO_4).

Рисунок 6 – Изменение количества равновесных фаз от температуры (а, б) и степени перехода элементов (в, г) в щелочные соединения при нагреве обожженного концентрата 2 с Na₂CO₃ (а, в) и K₂CO₃ (б, в)

В температурном интервале 1023-1173 К использование Na₂CO₃ сопровождается образованием достаточно большого количества Na₂SiO₃, в то время как с K₂CO₃ количество силиката калия – лишь 0,1 %. Взаимодействие

карбонатов щелочных металлов с диоксидом кремния приводит к снижению степени перехода (α) вольфрама в Na₂WO₄ (K₂WO₄). Избыток карбоната натрия (калия) в рабочем теле способствует переходу Fe_xMn_{1-x}WO₄ в Na₂WO₄ (K₂WO₄). Значения α , близкие к 100 % получены при расходе K₂CO₃ в 110 % от стехиометрического необходимого количества, в отличие от Na₂CO₃, где для достижения таких показателей необходим избыток реагента в 170 %. В системе с Na₂CO₃, заметно возрастает и степень образования Na₂SiO₃ ($\alpha > 20$ %), в отличие от системы с K₂CO₃, в которой степень перехода кремния в K₂SiO₃ не превышает 2 % (при расходе 110 %). Поэтому использование K₂CO₃ для спекания с вольфрамитовым концентратом низкого качества является предпочтительным, особенно в случае повышенного содержания диоксида кремния в исходном сырье.

Таким образом, на образование водорастворимых вольфраматов влияют содержащиеся в концентрате примеси. Повышенные количества SiO_2 , Al_2O_3 , $CuMoO_4$ и FeMoO_4 в обожженном концентрате снижают степень перехода вольфрама в Na_2WO_4 (K_2WO_4). Применение K_2CO_3 вместо Na_2CO_3 при термообработке вольфрамитовых концентратов уменьшает вероятность развития побочных реакций образования силикатов щелочных металлов.

В третьей главе приведены результаты оценки механизма и кинетики термохимического взаимодействия вольфрамита и концентратов с карбонатами натрия и калия. Методами дифференциально-термического с последующим фазовым анализом продуктов показано, что взаимодействие Fe_xMn_{1-x}WO₄ с Na₂CO₃ (K₂CO₃) начинается выше 723-743 К, сопровождается образованием Na₂WO₄ (K₂WO₄) и NaFeO₂ (KFeO₂), а также оксидов железа и марганца. На (рисунок 7) эффекты до 452 К связаны термограммах с удалением кристаллизационной воды. Эндотермические эффекты (начало/экстремум) при 858 / 866 К (для Na₂CO₃) и 977 / 995 К (K₂CO₃) отвечают плавлению эвтектик Na₂CO₃-Na₂WO₄ и K₂CO₃-K₂WO₄, соответственно. Эффекты при 956 К (для Na₂CO₃) и 1202 К (K₂CO₃) соответствуют плавлению образующихся продуктов реакции – вольфраматов натрия и калия. Изменение скорости нагрева образцов от 20 до 2,5 К/мин понижает температуры эндотермических эффектов и начала химических реакций, что позволяет использовать эти параметры для оценки кинетики процессов.

Модельные эксперименты по термообработке смесей Fe_xMn_{1-x}WO₄ - Na₂CO₃ (K₂CO₃) с последующим удалением водорастворимых соединений позволили проследить за изменением структуры вольфрамита. Параметры элементарных ячеек вольфрамитов (таблица 2) в твердых продуктах выщелачивания не меняются, если взаимодействие проходит в интервале до 873 К. В образцах, подготовка которых сопряжена с нагревом до 973-1073 К,

атомное отношение Fe/Mn в не провзаимодействовавшем вольфрамите снижается до 0,2. На основании этого уточнен механизм процесса и сделан вывод о большей реакционной способности вольфрамитов с повышенной долей железа.

Рисунок 7 – Термограммы смеси вольфрамита с Na₂CO₃ (а) и K₂CO₃ (б) при нагреве со скоростью 20 К/мин в токе воздуха

Таблица 2 – Параметры элементарных ячеек и состав вольфрамитов в кеках выщелачивания

Т, К	Парам	иетры элем Fe _x Mn _{1-x}	ентарной я WO ₄ , нм	чейки	Состав	Fe/Mn	
	a	b	С	β°	$\Gamma e_{x} W \Pi_{1-x} W O_{4}$		
272	0,4781	0,5732	0,4982	90,59	$Fe_{0,5}Mn_{0,5}WO_4$	0,98	
115	0,4803	0,5740	0,4988	90,90	$Fe_{0,3}Mn_{0,7}WO_4$	0,39	
972	0,4781	0,5731	0,4982	90,62	$Fe_{0,5}Mn_{0,5}WO_4$	0,99	
075	0,4801	0,5740	0,4988	90,90	$Fe_{0,3}Mn_{0,7}WO_4$	0,42	
973	0,4871	0,5746	0,4995	90,97	$Fe_{0,1}Mn_{0,9}WO_4$	0,16	
1073	0,4813	0,5742	0,4996	90,97	$Fe_{0,2}Mn_{0,8}WO_4$	0,22	

Результаты термогравиметрического (ТГ) анализа (рисунок 8) легли в основу расчета энергии активации (Е) и предэкспоненциального множителя (А) взаимодействия вольфрамита с карбонатами натрия и калия, проведенных безмодельным методом Фридмана. Из полученных данных следует, что процесс спекания вольфрамита с карбонатами натрия и калия состоит, как минимум, из двух стадий, на первой из которых величина Е находится в пределах 240-260 и 175-200 кДж/моль, а log A-12,0-14,4 и 7,2-8,0 с⁻¹ для Na₂CO₃ и K₂CO₃ соответственно. В дальнейшем, значение Е для системы с карбонатом натрия снижается до 160-220 кДж/моль, а с K₂CO₃ – увеличивается до 410-450 кДж/моль.

Последующая обработка данных проведена методом нелинейной регрессии по моделям двухстадийных процессов. Экспериментальные данные описаны двумя последовательными стадиями, первая из которых протекает в диффузионном (по Яндеру) режиме, а вторая, после появления в системе легкоплавких эвтектик

Na₂WO₄-Na₂CO₃ или K₂WO₄-K₂CO₃, соответствует, предположительно, реакции пго порядка с автокатализом по реагенту (таблица 3).

Рисунок 8 – Результаты ТГ-анализа и обработка данных по методу Фридмана взаимодействия вольфрамита с Na₂CO₃ (a, б) и K₂CO₃ (b, г) при нагреве на воздухе со скоростями 2,5 (1), 10 (2), 20 (3) К/мин

Таблица 3 — Кинетические параметры взаимодействия вольфрамита с карбонатами натрия и калия

	Стадия 1 (α до 0,70)		Ста				
Система	Е ₁ , кДж/моль	$\log A_1$, c ⁻¹	Е2, кДж/моль	$\log A_2$, c ⁻¹	n ₂	log K _{cat}	r^2
Минерал – Na ₂ CO ₃	243	11,9	212	9,8	0,99	-3,26	0,999
Минерал – К ₂ СО ₃	169	6,7	259	11,1	0,99	-4,0	0,999

Механизмы взаимодействия вольфрамита с Na₂CO₃ и K₂CO₃ однотипны. На границе раздела фаз при температуре спекания протекают реакции между твердыми реагентами с образованием слоя вольфрамата натрия. Поверхностная миграция реагентов с последующей объемной диффузией через слой продукта реакции является лимитирующей стадией процесса. Далее, предположительно, в системе образуется легкоплавкая эвтектика, снижающая диффузионные затруднения и процесс переходит в режим автокатализа.

На термограммах (рисунок 9) смесей концентрата с карбонатами натрия и калия отмечены экзотермические эффекты при 748/756 К и 803/807 К, отвечающие окислению сульфидов. Однако, выделения SO₂ в газовую фазу не зафиксировано, что объясняется образованием сульфатов щелочных металлов. Интенсивное снижение массы образца за счет выделения CO₂, в ходе взаимодействия карбонатов

с вольфрамитом, в системе с Na₂CO₃ начинается при 812 К, в то время, как для K₂CO₃ оно смещено в область меньших температур – 793 К. Снижение массы образцов завершается при 1023-1093 К.

Рисунок 9 – Термограммы смесей концентрата 1 с Na₂CO₃ (а) и K₂CO₃ (б) при нагреве со скоростью 10 К/мин в токе воздуха

С использованием данных РФА, установлен переход $Fe_{0,3}Mn_{0,7}WO_4$ в $Fe_xMn_{1-x}WO_4$ (x < 0,3) с образованием ферритов натрия, калия и марганца, а также оксидов железа и марганца. Изменение соотношения Fe/Mn в вольфрамитах подтверждено оценкой параметров элементарных ячеек в твердых остатках после выщелачивания. Изменения в ряду непрерывных твердых растворов вольфрамитов, в соответствии с рентгенографическими рефлексами, межплоскостными расстояниями и параметрами элементарных ячеек, можно пояснить реакциями (1)-(4):

 $14,8Fe_{0,3}Mn_{0,7}WO_4 + 6 Na_2CO_3 + O_2 = 6Na_2WO_4 + 8,8Fe_{0,05}Mn_{0,95}WO_4 + 2Fe_2MnO_4 + 6CO_2,$ (1)

 $14,8Fe_{0,3}Mn_{0,7}WO_4 + 6 K_2CO_3 + 1,11 O_2 = 6K_2WO_4 + 8,8Fe_{0,15}Mn_{0,85}WO_4 + 1,56Fe_2MnO_4 + 0,66Mn_2O_3 + 6CO_2.$ (2)

В последующем, остаточный вольфрамит реагирует с карбонатом натрия или калия с образованием вольфрамата и оксида марганца по реакциям:

 $4Fe_{0,05}Mn_{0,95}WO_4 + 4Na_2CO_3 + 0,975O_2 = 4Na_2WO_4 + 0,1Fe_2MnO_4 + 1,85Mn_2O_3 + 4CO_2,$ (3)

 $4Fe_{0,15}Mn_{0,85}WO_4 + 4K_2CO_3 + 0,925O_2 = 4K_2WO_4 + 0,3Fe_2MnO_4 + +1,55Mn_2O_3 + 4CO_2.$ (4)

Для оценки кинетики взаимодействия концентрата с карбонатами натрия и калия, продукты полученные при термообработке смесей (1023, 1073, 1173 К, $\tau = 2-20$ мин) концентрата с Na₂CO₃ и K₂CO₃ подвергнуты водному выщелачиванию. По данным химического анализа растворов оценена степень перехода вольфрама (α) в водорастворимые вольфраматы натрия и калия (рисунок 10). Полученные данные использованы для определения реакционной модели и расчета кинетических параметров процесса.

Рисунок 10 – Степень перехода вольфрама в Na₂WO₄ (K₂WO₄) в ходе термообработки смеси концентрата 1 с Na₂CO₃ (а) и K₂CO₃ (б) на воздухе при 1023 (1), 1073 (2), 1123 (3) К, точки – эксперимент, линии – модель CnB

Взаимодействие вольфрамита, содержащегося в концентрате, с Na₂CO₃ (K₂CO₃) описано уравнениями (5), (6):

для Na₂CO₃ $d\alpha/d\tau = 10^{0.8} \cdot \exp(-92000/RT) \cdot (1-\alpha)^{0.94} \cdot (1+10^{2.06} \cdot \alpha),$ (5) для K₂CO₃ $d\alpha/d\tau = 10^{1.40} \cdot \exp(-71800/RT) \cdot (1-\alpha)^{0.57} \cdot (1+10^{1.70} \cdot \alpha).$ (6) Энергия активации, при этом, составляет 92,0 и 72,2 кДж/моль (таблица 4), соответственно для взаимодействия концентрата с Na₂CO₃ и K₂CO₃.

Таблица 4 – Кинетические параметры взаимодействия в смесях концентрата 1 с Na₂CO₃ и K₂CO₃

Система	Е, кДж/моль	$\log A, c^{-1}$	log K	n	r^2
Концентрат 1 – Na ₂ CO ₃	92,0	0,80	2,06	0,94	0,991
Концентрат 1 – К ₂ СО ₃	72,2	-0,20	1,70	0,57	0,997

Таким образом, как показывают экспериментальные данные, механизм и кинетика взаимодействия вольфрамитового концентрата с карбонатами натрия и калия близки между собой. Особенности их использования проявляются лишь при снижении качества исходного концентрата.

В четвертой главе представлено обоснование технологии переработки низкокачественных вольфрамитовых концентратов и дана её техникоэкономическая оценка.

Для сопоставительного анализа и оптимизации условий спекания концентрата с Na_2CO_3 и K_2CO_3 проведены модельные эксперименты с использованием метода математического планирования. Определены частные зависимости, связывающие степень извлечения (γ) вольфрама в раствор при выщелачивании с количеством (Q) вводимых карбонатов щелочных металлов на стадии спекания, температурой (T) и продолжительностью процесса (τ). При этом, учитывали влияние пяти уровней факторов (таблица 5), а матрица трехфакторного эксперимента включала 25 опытов для систем с Na_2CO_3 и K_2CO_3 . В качестве объекта исследования взят концентрат 2.

Уровень Фактор Т. К τ, мин O, %

Таблица 5 – Уровни изучаемых факторов

Частные функции для системы концентрат 2 – Na₂CO₃ представлены уравнениями (7)-(9):

$$\gamma_T = -418,4 + 1,08 \cdot 10^6 / \mathrm{T} - 5,80 \cdot 10^8 / \mathrm{T}^2, \tag{7}$$

$$\gamma_{\tau} = 57,47 + 0,128 \cdot \tau - 5,49 \cdot 10^{-4} \cdot \tau^2 \quad , \tag{8}$$

$$\gamma_Q = 1454 - 36,55 \cdot Q + 0,312 \cdot Q^2 - 8,67 \cdot 10^{-4} \cdot Q^3.$$
⁽⁹⁾

Частные функции для системы концентрат 2 – К₂СО₃ имеет вид (10)-(12):

$$\gamma_T = -224, 2 + 4,94 \cdot 10^{-4} \cdot T^2 - 1,945 \cdot 10^{-10} \cdot T^4, \tag{10}$$

$$\gamma_{\tau} = 45,79 + 0,221 \cdot \tau - 5,39 \cdot 10^{-4} \cdot \tau^2, \tag{11}$$

$$\gamma_Q = 142,3 - 2,1 \cdot 10^{-2} \cdot Q^2 + 1,537 \cdot 10^{-6} \cdot Q^4 - 3,401 \cdot 10^{-11} \cdot Q^6.$$
(12)

Обобщенные уравнения для описания зависимости степени перехода вольфрама в раствор от Q, T и т представлены в виде уравнений (13), (14):

для Na₂CO₃
$$\gamma_{\alpha 1} = \gamma_T \cdot \gamma_\tau \cdot \gamma_Q / 62,5^2,$$
 (13)

для
$$K_2 CO_3$$
 $\gamma_{\alpha 2} = \gamma_T \cdot \gamma_\tau \cdot \gamma_Q / 56,5^2.$ (14)

Для выбора реагентного режима и регулируемых параметров с использованием комплекса Statistica представлены графические зависимости (рисунок 11) степени извлечения вольфрама от рассмотренных факторов.

Рисунок 11 – Степени извлечения вольфрама в раствор из продуктов спекания (1073 К) концентрата 2 с Na₂CO₃ (а) и K₂CO₃ (б) от их количества (Q) и продолжительности термообработки (τ)

Показаны преимущества использования K_2CO_3 для переработки низкокачественного концентрата. Извлечение вольфрама в раствор более 95 % достигнуто при выщелачивании спеков концентрата 2 с K_2CO_3 , образованных при 1073-1173 К ($\tau = 120$ мин) при в количестве карбоната 110 % от стехиометрически необходимого. В тех же условиях, спекание концентрата с Na_2CO_3 позволяет

извлекать менее 70 % вольфрама. Повышение этого показателя до 95 % введении Na_2CO_3 В количестве, равном 140 % достигнуто при от стехиометрически необходимого. Полученные данные приняты в качестве базовых для укрупненных испытаний пиро-гидрометаллургической переработки концентрата 2 (26,2 W, 3,88 Mo, 10,4 Si и 10,5 % S) с Na₂CO₃ и K₂CO₃ на опытнопромышленном участке ЗАО «ПТП «Резонанс». Для снижения содержания серы концентрат подвергали окислительному обжигу В камерной печи (СНО-8,5.17.5/10) в течение 120 минут при 1073 К. Огарок после обжига содержал, %: 27,9 W, 10,4 Fe, 10,2 Si, 5,4 Cu, 4,6 Mn, 3,8 Mo, 0,8 S.

Последующее спекание вели в течение 120 минут при 1073 К и соотношении огарок / Na₂CO₃ (K₂CO₃) / NaNO₃ (KNO₃) равном 1 / 0,34 / 0,03. реагентов: Полученные продукты (рисунок 12) отличаются по виду: использование натрийсодержащих реагентов приводит к частичному оплавлению с формированием визуально различимых светлых И темных участков. Использование калийсодержащих реагентов позволяет получить пористый, рассыпающийся, при незначительных нагрузках, порошок. Анализ полученных результатов показывает, что продукты спекания обожженного концентрата с карбонатами натрия и калия мало отличаются по составу, но имеют разную температуру плавления, что сказывается на показателях процесса.

Последующую гидрометаллургическую переработку продуктов спекания вели в агитаторе из нержавеющей стали (объем 63 дм³) с водообогреваемой рубашкой при постоянном перемешивании. Отношение ж : т составляло 5 : 1, продолжительность выщелачивания – 2 часа, температура – 368-371 К. По окончании процесса пульпу фильтровали на нутч-фильтре с отделением твердой фазы (кека). Как следует из полученных результатов, переработка продуктов спекания обожженного концентрата с Na₂CO₃ обеспечивает перевод в раствор 95,3 % W, 95,3 Mo, 9,2 Si, 6,0 P и 100 % S. В свою очередь, выщелачивание спекания обожженного концентрата 2 с K_2CO_3 продукта позволяет концентрировать в растворе 97,5 % W, 98,2 Mo, 0,61 P и 100 % S. Оксиды кремния, железа, марганца, меди и алюминия остаются в кеке.

Рисунок 12 – Продукты спекания обожженного концентрата 2 с Na₂CO₃ (а) и К₂CO₃ (б)

По результатам моделирования, определены основные показатели технологической схемы (рисунок 13) переработки низкокачественного вольфрамитового концентрата с получением CaWO₄. Основополагающими переделами в предполгаемой схеме являются: окислительный обжиг исходного концентрата с последующим спеканием полученного продукта с карбонатом калия (натрия). При использовании в качестве реагента Na₂CO₃, необходим частичный возврат кеков выщелачивания на стадию шихтоподготовки.

Ориентировочная экономическая оценка (по меняющимся затратам), технологии переработки низкокачественных вольфрамитовых концентратов показала, что переход на использование калийсодержащих реагентов позволяет получить экономический эффект в размере 3,7 тыс. руб на тонну сырья.

Установленные технологические параметры технологии использованы на ЗАО «ПТП «Резонанс» для переработки низкокачественных вольфрамитовых концентратов.

Рисунок 13 – Технологическая схема переработки низкокачественного вольфрамитового концентрата

ЗАКЛЮЧЕНИЕ

1. Проведены системные исследования кинетики спекания вольфрамитового сырья с карбонатами натрия и калия. Выявлены особенности процесса при усложнении состава исходных образцов от монокристаллического вольфрамита

(77,0 WO₃) до качественного (60,0 WO₃) и низкокачественного (28,9 WO₃) концентратов. Показана целесообразность использования K₂CO₃ при переработке низкокачественного сырья.

2. Установлено, что взаимодействие Fe_xMn_{1-x}WO₄ с карбонатами щелочных металлов сопровождается уменьшением соотношения Fe/Mn в нереагируемом вольфрамите, исходя из чего сделано заключение о большей реакционной способности его высокожелезистых разновидностей. Выявлена стадийность реакций при спекании вольфрамита с карбонатами щелочных металлов, первоначально ограниченных диффузией реагентов к реакционной поверхности, а в дальнейшем – автокатализом, которому способствует формирование эвтектик Na₂CO₃-Na₂WO₄ (K₂CO₃-K₂WO₄).

3. Определены составы минералов, формирующих вольфрамитовые концентраты. Показано, что присутствующие в концентратах включения влияют на последовательность фазообразования при термообработке и полноту протекания реакций. Уменьшение доли образующихся силикатов щелочных металлов имеет место при замене Na₂CO₃ на K₂CO₃. Помимо того, использование при спекании K₂CO₃ сопровождается образованием соединений с большей температурой плавления, что предупреждает оплавление и настылеобразование в ходе осуществления процесса при повышенных температурах.

4. Обоснована последовательность процессов в технологии переработки низкокачественного вольфрамитового сырья, отличающегося повышенным содержанием серы, молибдена и диоксида кремния, включающая: окислительный обжиг, спекание с карбонатами щелочных металлов, водное выщелачивание, очистку растворов и осаждение вольфрамата кальция. Оптимизация режима спекания концентрата по температуре (1073-1123 К) и количеству K₂CO₃ (105-110% от стехиометрически необходимого) позволила вести процесс без введения оборотных материалов.

5. Укрупненные испытания по обжигу и спеканию вольфрамитового концентрата с карбонатами щелочных металлов подтвердили эффективность выбранных режимов обработки сырья. Установлена возможность спекания вольфрамитового концентрата с K₂CO₃ без введения оборотных материалов. переработки Технология низкокачественного сырья, включающая обжиг концентрата, спекание с карбонатами щелочных металлов без добавок оборотных материалов, выщелачивание, очистку растворов и осаждение CaWO₄ освоена на ЗАО «ПТП «Резонанс». Спекание (1073 К) окисленного концентрата с К₂СО₃, взятом в количестве 110 % от стехиометрически необходимого на образование K₂WO₄, K₂SO₄ и K₂MoO₄, обеспечивает степень перехода вольфрама в водорастворимый вольфрамат на уровне 97,5 %. Экономическая эффективность мероприятий по замене Na₂CO₃ на K₂CO₃ оценена в 3,7 тыс. рублей на тонну

концентрата. Технология рекомендована для реализации на предприятиях, перерабатывающих низкокачественное вольфрамсодержащее сырье.

Рекомендации и перспективы дальнейшей разработки темы.

В плане развития разрабатываемого направления предполагается проведение исследований по повышению степени десульфурации при обжиге низкокачественного концентрата за счет изменения крупности измельчения, температуры и парциального давления кислорода; замене хлоридов (HCl, CaCl₂), используемых при очистке растворов и осаждении вольфрамата кальция, на нитраты, с возможностью получения калиевых удобрений из растворов после осаждения вольфрамата кальция; окускованию CaWO₄ для использования при легировании сталей.

Основное содержание диссертации изложено в следующих печатных работах:

В научных изданиях, рекомендованных ВАК РФ:

1. Selivanov, E.N. Kinetics and mechanism of natural wolframite interactions with sodium carbonate / E.N. Selivanov, K.V. Pikulin, L.I. Galkova, R.I. Gulyaeva, S.A. Petrova // International Journal of Minerals, Metallurgy and Materials. $-2019. - V. 26. - N_{\rm P} 11. - P. 1364-1371.$

2. Selivanov, E.N. Kinetics of the natural wolframite interaction with sodium and potassium carbonates / E.N. Selivanov, K.V. Pikulin, R.I. Gulyaeva, L.I. Galkova // Materials Science Forum. -2020. - V.989. - P.440-447.

3. Селиванов, Е.Н. Кинетика и механизм взаимодействия природного вольфрамита с карбонатом калия / Е.Н. Селиванов, К.В. Пикулин, Л.И. Галкова, Р.И. Гуляева // Химическая технология. – 2020. – № 1. – С. 15-23.

4. Пикулин, К.В. Термодинамическое моделирование фазообразования при спекании вольфрамитового концентрата с карбонатами щелочных металлов / К.В. Пикулин, Л.И. Галкова, Е.Н. Селиванов // Бутлеровские сообщения. – 2018. – Т. 55. – № 7. – С. 52-57.

5. Пикулин, К.В. Термодинамическое моделирование процесса фазообразования в ходе спекания вольфрамита с карбонатами щелочных металлов / К.В. Пикулин, Е.Н. Селиванов, Л.И. Галкова // Бутлеровские сообщения. – 2018. – Т. 54. – № 5. – С. 152-158.

6. Пикулин, К.В. Особенности фазообразования и кинетика процесса спекания вольфрамитового концентрата с карбонатом натрия / К.В. Пикулин, Е.Н. Селиванов, Л.И. Галкова, Р.И. Гуляева // Химическая технология. – 2018. – Т. 19. – № 9. – С. 413-423.

7. Пикулин, К.В. Особенности извлечения вольфрама из отработанных катализаторов нефтеоргсинтеза / К.В. Пикулин, Е.Н. Селиванов, Л.И. Галкова, Р.И. Гуляева // Цветные металлы. – 2017. – № 11. – С. 31-36.

В других изданиях:

8. Селиванов, Е.Н. Кинетика взаимодействия природного вольфрамита с карбонатами натрия и калия / Е.Н. Селиванов, К.В. Пикулин, Р.И. Гуляева, Л.И. Галкова // Машиностроение: сетевой электронный научный журнал. – 2019. – Т. 7. – № 4. – С. 38-46.

9. Пикулин, К.В. Термокинетика реакций взаимодействия вольфрамита с карбонатами натрия и калия / К.В. Пикулин, Е.Н. Селиванов, Р.И. Гуляева, Л.И. Галкова // Сборник тезисов «XXI Менделеевский съезд по общей и прикладной химии», 09-13 сентября, 2019. – Россия, Санкт-Петербург. – С. 86.

10. Пикулин К.В. Извлечение вольфрама из отработанных катализаторов нефтеоргсинтеза / К.В. Пикулин, Л.И. Галкова, Е.Н. Селиванов, Ф.Г. Ситдиков // Труды Конгресса с международным участием и конференция молодых ученых «Техноген–2017. Фундаментальные исследования и прикладные разработки процессов переработки и утилизации техногенных образований. Уральский рынок лома, промышленных и коммунальных отходов», 05-09 июня, 2017. – Россия, Екатеринбург. – С. 578-581.

11. Ситдиков, Ф.Г. Переработка низкосортных вольфрамовых концентратов / Ф.Г. Ситдиков, К.В. Пикулин, Л.И. Галкова, Е.Н. Селиванов, А.Г. Водопьянов // Сборник материалов международной научно-практической конференции «Рений, вольфрам, молибден – 2016. Научные исследования, технологические разработки, промышленное применение», 24-25 марта, 2016. – Россия, Москва. – С. 126-130.

12. Ситдиков, Ф.Г. Получение вольфрамата кальция из низкокачественных концентратов / Ф.Г. Ситдиков, Л.И. Галкова, К.В. Пикулин, Е.Н. Селиванов // Материалы международной научно-практической конференции «Инновации в комплексной переработке минерального сырья», 21-22 января, 2016. – Казахстан, Алматы. – С. 548-553.

13. Ситдиков, Ф.Г. Технология переработки низкокачественных вольфрамовых концентратов / Ф.Г. Ситдиков, Л.И. Галкова, К.В. Пикулин, Е.Н. Селиванов, А.Г. Водопьянов // Материалы XX Международной научно-практической конференции «Научные основы и практика переработки руд и техногенного сырья», 15-16 апреля, 2015. – Россия, Екатеринбург. – С. 223-227.

14. Ситдиков, Ф.Г. Прямое легирование стали вольфраматом кальция, полученным из низкокачественных концентратов / Ф.Г. Ситдиков, Л.И. Галкова, К.В. Пикулин, Е.Н. Селиванов, А.Г. Водопьянов // Труды научно-практической конференции «Перспективы развития металлургии и машиностроения с использованием завершенных фундаментальных исследований и НИОКР», 03-05 июня, 2015. – Россия, Екатеринбург. – С. 273-277.