Vladimir S. Saakov · Valery Z. Drapkin Alexander I. Krivchenko · Eugene V. Rozengart Yuri V. Bogachev · Mikhail N. Knyazev

Derivative Spectrophotometry and Electron Spin Resonance (ESR) Spectroscopy for Ecological and Biological Questions

Vladimir S. Saakov • Valery Z. Drapkin • Alexander I. Krivchenko • Eugene V. Rozengart • Yuri V. Bogachev • Mikhail N. Knyazev

Derivative
Spectrophotometry and
Electron Spin Resonance
(ESR) Spectroscopy for
Ecological and Biological
Questions

Vladimir S. Saakov Sechenov Institute of Evolutionary Physiol. and Biochem. Russian Academy of Science Thorez Av. 44 Saint-Petersburg Russia

Alexander I. Krivchenko
Eugene V. Rozengart
Sechenov Inst. of Evolutionary Physiol.
and Biochem.
Russian Academy of Science
Saint-Petersburg
Russia

Valery Z. Drapkin Yuri V. Bogachev Mikhail N. Knyazev Department of Physics State Electrotechnical University Saint-Petersburg

ISBN 978-3-7091-1006-5 ISBN 978-3-7091-1007-2 (eBook) DOI 10.1007/978-3-7091-1007-2 Springer Wien Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012940214

© Springer-Verlag Wien 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher's location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Contents

1	Introduction]
2	Basis of Derivative Spectrophotometry	-
	2.1 The Main Law of Light Absorption by a Substance	
	2.1.1 Reasons for Deviation from Bouguer's Law	. 7
	2.2 Correctness and Accuracy of Spectrophotometric Data	10
	2.2.1 Main Factors Influencing the Accuracy of Spectrophotometric	
	Measurements	11
	2.2.2 Difference (Differential) Spectrophotometry	15
	2.2.3 Measurement Errors of Difference Spectrophotometry	17
	2.3 Derivative Spectrophotometry	19
	2.3.1 Methods of Derivative Signal Registration and Diagrams of	
	Differential Analyzers	38
	2.3.2 Parameter Optimization of the Differentiating Circuit	43
	2.3.3 Derivative Spectrophotometry of Difference Spectra	53
	2.3.4 Method of the Pulse Amplitude-Modulated Fluorescence for the	
	Solution of Ecological-Biochemical Problems	54
	References	57
3	The Derivative Spectrophotometry Method for Analysis of	
	Biologically Active Substances	71
	3.1 Derivative Spectrophotometry for Analysis of a Number of	
	Guanidine Preparations	7
	3.2 Chelating Ability of 1,3-Bis-((p-Chlorobenzylidene)amino)	
	Guanidine: Complexes with Ca ²⁺ and La ³⁺ Ions	79
	3.3 The Special Features of the Ca ²⁺ Binding by <i>mono-</i> , <i>bis-</i> and <i>tris-</i>	
	Substituted Guanidine Derivatives	84
	3.4 Special Features of Interaction of <i>Bis-</i> ((Chlorobenzylidene)amino)	
	Guanidine Derivatives with Ca ²⁺ Depending on the Chlorine Atom	
	Position in the Molecule	93

X

	3.5	Guanidine Derivatives Containing Electron-Donor or Electron-Accept	
			101
	3.6	Special Features of Calcium Ions Interaction with <i>Bis-</i> ((4-hydroxy-3-methoxybenzilidene)amino) Guanidine and <i>Bis-</i> ((4-cyanobenzilidene)	
			107
	3.7	The Proof of Polycomponent Composition of the Promising	
		Antitumor Drug "Ukrain"	113
	3.8	Derived Spectra Application for the Analysis of Derived Forms of Nondepolarizing Muscle Relaxant Tercuronium, of Vitamins and	
		Hormones	125
		3.8.1 Comparative Analysis of Tercuronium Derivatives3.8.2 The Reasonability of Derived Spectra Application for the	125
		Analysis of Commercial Preparations of Vitamins	120
	2.0	and Hormones	128
	3.9	The Importance of Derivative Spectrophotometry in Modern Studies of Aromatic Amino Acids and Proteins	133
		3.9.1 Special Features of Derived Spectra of Phenylalanine,	133
		Tyrosine, and Tryptophan	135
		3.9.2 Special Features of Phenylalanine Spectra Change Caused by	133
		Influence of Gamma Radiation	143
		3.9.3 Specific Character of Tyrosine Spectra Changes	143
		Under Influence of Gamma-Radiation	149
		3.9.4 The Character of Tryptophan Derived Spectra Change Under	1 17
		Influence of Gamma-Irradiation	154
		3.9.5 The Comparative Characteristic of Albumin Denaturation	
		Spectral Changes Under Thermal and	
		Radiation Exposures	160
		3.9.6 Changes of the Gamma Globulin Optical Spectra Under	
		γ-Irradiation	167
		3.9.7 Special Features of γ-Globulin Spectra Changes During	
		γ-Globulin Denaturation Caused by Thermal and Radiation	
		Exposure	174
		3.9.8 The Coupling of Albumin Derived Spectra Change with the	
		Determination Accuracy of Albumin/Globulin Coefficient for	
		Radiation Injuries	182
	Ref	erences	189
1	Δni	plicability of the DSHO Method in Work with Pigments of	
•		nts and Animals	197
		Derived Spectra of High Orders for Some Carotenoids	204
		Neoxanthin as a Probable Key Product of Formation of α - and	
		· · · · · · · · · · · · · · · · · · ·	213
	4.3	Metabolic Transformations of Labeled ¹⁴ C- or ³ H-Carotene	
		in Animal Tissues	219

	4.4	Importance of Derivative Spectrophotometry for Study of	
		Alternative Ways of Carotenoids Biosynthesis in Procaryota	
		and Eucaryota	223
	4.5	Possibility of Participation of α-Ketoglutaric Acid Funds in	
		Carotenoids Biosynthesis in Chloroplasts	232
	4.6	Malic Acid as the Source for Carotenoids Synthesis in	
		Plants with C4-Way of Carbon in Photosynthesis	237
	4.7	Indication of the De-epoxidation Reaction with the Help of	
		Derived Spectra	244
		4.7.1 Coupling of the De-epoxidation Reaction of Xanthophylls	
		with Change of D ^{II} Spectra at $\lambda = 460$ –470 nm	244
		4.7.2 Capabilities of Derivative Spectrophotometry	
		for Assessment of the Influence of Poisons and Herbicides	
		as Extreme Factors of the Environment	253
		4.7.3 Features of Influence of Photosystem Inhibitors and of	
		Photophosphorylation Uncouplers on Dynamics of Pigment	
		Content	258
		4.7.4 The Coupling of Xanthophylls Transformations with	
		Chloroplast Energetics	263
		4.7.5 Assessment of Characteristics of Radiation Injuries of the	
		Photosynthetic Apparatus In Vivo with Help of Derived	
		Spectra of High Orders	270
		4.7.6 Derivative Spectrophotometry for the Analysis of Pigments	
		of Blood and Its State	284
		4.7.7 Possibility of Application of the Method of Differentiation	
		of Spectral Curves to the Decoding of Electrocardiograms	
		for the Analysis of Heart Activity	287
	Ref	erences	289
5	EP	R Spectroscopy for Solution of Some Scientific Real-World	
	Pro	oblems in Biology, Medicine and Ecology	301
	5.1	The Phenomenon of Magnetic Resonance	302
	5.2	EPR Phenomenon	306
		5.2.1 Induced Electron Quantum Transitions	
		in EPR Phenomenon	306
		5.2.2 Hyperfine Electron–Nuclear Interaction in	
		the EPR Method	310
		5.2.3 A Stationary Method of Magnetic Resonance	
		Signals Detection	313
	5.3	EPR-Dosimetry	317
		5.3.1 EPR-Dosimetry of Population	317
		5.3.2 EPR-Dosimetry of Objects and Territories	320
		5.3.3 "Alanine" Dosimetry	322
	5.4	Detection of Paramagnetic Ions in Water Solutions at Room	
		Temperature	322

	5.5 EPR of Paramagnetic Ions in Low-Temperature	
	Water-Acidic Matrices	324
	5.6 Detection of Impurities Capable of Being Photooxidized,	
	in Water, with the Use of Electron Phototransfer Reaction	327
	5.7 Determination of Deuterium Concentration in Water	330
	5.8 Multiquantum Processes in Reactions of Photosynthesis and	
	Photosensitization	332
	5.9 Resolution of Overlapped Spectra	334
	5.10 Small-Sized Specialized EPR Equipment	338
	5.11 Measurement of Dielectric Properties of Substances at	
	Frequencies 10 and 30 GHz	342
	References	346
6	Conclusion	349
Ĭ'n	ndex	353