Главная Новые поступления Описание Шлюз Z39.50

Базы данных


Труды сотрудников Института теплофизики УрО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
 Найдено в других БД:Каталог книг и продолжающихся изданий (2)Каталог препринтов УрО РАН (1975 г. - ) (1)Изобретения уральских ученых (2)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>A=Вершинин, Сергей Васильевич$<.>)
Общее количество найденных документов : 38
Показаны документы с 1 по 20
 1-20    21-38 
1.
Инвентарный номер: нет.
   
   V 50


    Vershinin, S. V.
    Effect of the thermal contact resistance on heat-transfer during boiling from fine porous capillary structures / S. V. Vershinin, Y. G. Fershtater, Yu. F. Maydanik // High Temperature. - 1992. - Vol.30, №4. - С. 668-673
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
HEAT TRAHSFER -- VAPOR FORMATION
Аннотация: The dependence of the heat transfer rate on the geometry of vapor channels is investigated analytically and experimentally with a consideration of the thermal contact resistance during vapor formation in fine porous structures for carrying away the vapor. It is shown that the larger the contact resistance, the greater the distance between the channels must be to maximize the values of the heat-transfer coefficients

Найти похожие

2.
Инвентарный номер: нет.
   
   V 50


    Vershinin, S. V.
    Effect of the thermal contact resistance on heat-transfer during boiling from fine porous capillary structures / S. V. Vershinin, Y. G. Fershtater, Yu. F. Maydanik // High Temperature. - 1992. - Vol.30, №4. - С. 668-673
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
HEAT TRAHSFER -- VAPOR FORMATION
Аннотация: The dependence of the heat transfer rate on the geometry of vapor channels is investigated analytically and experimentally with a consideration of the thermal contact resistance during vapor formation in fine porous structures for carrying away the vapor. It is shown that the larger the contact resistance, the greater the distance between the channels must be to maximize the values of the heat-transfer coefficients

Найти похожие

3.
Инвентарный номер: нет.
   
   S 71


   
    Some results of loop heat pipes development, tests and application in engineering [Text] / Yu. F. Maydanik, Y. G. Fershtater, S. V. Vershinin, V. G. Pastukhov, K. Goncharov // Proceedings of 5th International Heat Pipe Symposium (Melbourne, Australia, Nov. 17-20, 1996). - 1996. - P406-412
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
ТРУБА КОНТУРНАЯ -- КОНТУРНАЯ ТРУБА -- ТРУБА ТЕПЛОВАЯ -- ТЕПЛОВАЯ ТРУБА

Найти похожие

4.
Инвентарный номер: нет.
   
   S 71


   
    Some results of loop heat pipes development, tests and application in engineering [Text] / Yu. F. Maydanik, Y. G. Fershtater, S. V. Vershinin, V. G. Pastukhov, K. Goncharov // Proceedings of 5th International Heat Pipe Symposium (Melbourne, Australia, Nov. 17-20, 1996). - 1996. - P406-412
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
ТРУБА КОНТУРНАЯ -- КОНТУРНАЯ ТРУБА -- ТРУБА ТЕПЛОВАЯ -- ТЕПЛОВАЯ ТРУБА

Найти похожие

5.
Инвентарный номер: нет.
   
   T 44


   
    The proof-of-feasibility of multiple evaporator loop heat pipes / W. B. Bienert, D. A. Wolf, M. N. Nikitkin, Yu. F. Maydanik, Y. G. Fershtater, S. V. Vershinin, J. M. Gottschlich // 6th European Symposium on Space Environmental Control Systems: Noordwijk, Netherlands, 20-22 may 1997 . - 1997. - Vol.400. - С. 393-398
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPES -- THERMAL CONTROL -- MULTIPLE THERMAL INTERFACE
Аннотация: This paper presents results that demonstrate the proof-of-feasibility of multiple evaporator Loop Heat Pipes (LHP). It was demonstrated that a multiple evaporator LHP can successfully operate as a thermal control system component. A breadboard LHP with multiple evaporators (two) that retained the reliable self starting behavior of the single thermal interface LHP was developed. Program efforts were concentrated on a two pump system and investigated the performance of the dual evaporator LHP. Analytical predictons and experimental test data are compared, and important issues are discussed that will be a baseline for continued development of multiple thermal interface LHPs. All of the conclusions are based on test results, analytic modeling and the correlation of the two. Although a mathematical model that predicts the multiple evaporator LHP behavior was developed, the primary focus of the program was the development, fabrication, and test of a breadboard multi-evaporator LHP. The program clearly demonstrated that multi-evaporator LHPs are feasible and merit further development as a viable thermal control components

Найти похожие

6.
Инвентарный номер: нет.
   
   H 65


   
    High heat flux loop heat pipes / M. T. North, D. B. Sarraf, J. H. Rosenfeld, Yu. F. Maydanik, S. V. Vershinin // SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM (STAIF-97), PTS 1-3: 1ST CONFERENCE ON FUTURE SCIENCE & EARTH SCIENCE MISSIONS; 1ST CONFERENCE ON SYNERGISTIC POWER & PROPULSION SYSTEMS TECHNOLOGY; 1ST CONFERENCE ON APPLICATIONS OF THERMOPHYSICS IN MICROGRAVITY; 2ND CONFERENCE ON COMMERCIAL DEVELOPMENT OF SPACE; - 2ND CONFERENCE ON NEXT GENERATION LAUNCH SYSTEMS; 14TH SYMPOSIUM ON SPACE NUCLEAR POWER AND PROPULSION, ALBUQUERQUE, 26-30 JAN, 1997 . - 1997. - Vol.387. - С. 561-566
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPES -- THERMAL POWER LOADS -- VAPOR FLOW LOSSES
Аннотация: Loop Heat Pipes (LHPs) can transport very large thermal power loads, over long distances, through flexible, small diameter tubes and against high gravitational heads. While recent LHPs have transported as much as 1500 W, the peak heat flux through a LHP's evaporator has been limited to about 0.07 MW/m(2). This limitation is due to the arrangement of vapor passages next to the heat load which is one of the conditions necessary to ensure self priming of the device. This paper describes work aimed at raising this limit by threefold to tenfold. Two approaches were pursued. One optimized the vapor passage geometry for the high heat flux conditions. The geometry improved the heat flow into the wick and working fluid. This approach also employed a finer pored wick to support higher vapor flow losses. The second approach used a bidisperse wick material within the circumferential vapor passages. The bidisperse material increased the thermal conductivity and the evaporative surface area in the region of highest heat flux, while providing a flow path for the vapor. Proof-of-concept devices were fabricated and tested for each approach. Both devices operated as designed and both demonstrated operation at a heat flux of 0.70 MW/m(2). This performance exceeded the known state of the art by a factor of more than six for both conventional heat pipes and for loop heat pipes using ammonia. In addition, the bidisperse-wick device demonstrated boiling heat transfer coefficients up to 100,000 W/m(2) K, and the fine pored device demonstrated an orientation independence with its performance essentially unaffected by whether its evaporator was positioned above, below or level with the condenser

Найти похожие

7.
Инвентарный номер: нет.
   
   H 65


   
    High heat flux loop heat pipes / M. T. North, D. B. Sarraf, J. H. Rosenfeld, Yu. F. Maydanik, S. V. Vershinin // 6th European Symposium on Space Environmental Control Systems: Noordwijk, Netherlands, 20-22 may 1997 . - 1997. - Vol. 400. - С. 371-376
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPES -- POWER LOADS -- GRAVITATIONAL HEADS
Аннотация: Loop Heat Pipes (LHPs) can transport very large thermal power loads, over long distances, through flexible, small diameter tubes and gravitational heads. While recent transported as much as 1500 W, the peak heat flux through a LHP's evaporator has been limited to about 0.07 MW/m(2). This limitation is due to the arrangement of vapor passages next to the heat load which is one of the conditions necessary to ensure self priming of the device. This paper describes work aimed at raising this limit by threefold to tenfold. Two approaches were pursued. One optimized the vapor passage geometry for the high heat flux conditions. The geometry improved the heat flow into the wick and working fluid. This approach also employed a finer pored wick to support higher vapor flow losses. The second approach used a bidisperse wick material within the circumferential vapor passages. The bidisperse material increased the thermal conductivity and the evaporative surface area in the region of highest heat flux, while providing a flow path for the vapor. Proof-of-concept devices were fabricated and tested for each approach. Both devices operated as designed and both demonstrated operation at a heat flux of 0.70 MW/m(2) This performance exceeded the known state of the art by a factor of more than six for both conventional heat pipes and for loop heat pipes using ammonia. In addition, the bidisperse-wick device demonstrated boiling heat transfer coefficients up to 100,000 W/m(2).K, and the fine pored device demonstrated an orientation independence with its performance essentially unaffected by whether its evaporator was positioned above, below or level with the condenser

Найти похожие

8.
Инвентарный номер: нет.
   
   H 65


   
    High heat flux loop heat pipes / M. T. North, D. B. Sarraf, J. H. Rosenfeld, Yu. F. Maydanik, S. V. Vershinin // 6th European Symposium on Space Environmental Control Systems: Noordwijk, Netherlands, 20-22 may 1997 . - 1997. - Vol. 400. - С. 371-376
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPES -- POWER LOADS -- GRAVITATIONAL HEADS
Аннотация: Loop Heat Pipes (LHPs) can transport very large thermal power loads, over long distances, through flexible, small diameter tubes and gravitational heads. While recent transported as much as 1500 W, the peak heat flux through a LHP's evaporator has been limited to about 0.07 MW/m(2). This limitation is due to the arrangement of vapor passages next to the heat load which is one of the conditions necessary to ensure self priming of the device. This paper describes work aimed at raising this limit by threefold to tenfold. Two approaches were pursued. One optimized the vapor passage geometry for the high heat flux conditions. The geometry improved the heat flow into the wick and working fluid. This approach also employed a finer pored wick to support higher vapor flow losses. The second approach used a bidisperse wick material within the circumferential vapor passages. The bidisperse material increased the thermal conductivity and the evaporative surface area in the region of highest heat flux, while providing a flow path for the vapor. Proof-of-concept devices were fabricated and tested for each approach. Both devices operated as designed and both demonstrated operation at a heat flux of 0.70 MW/m(2) This performance exceeded the known state of the art by a factor of more than six for both conventional heat pipes and for loop heat pipes using ammonia. In addition, the bidisperse-wick device demonstrated boiling heat transfer coefficients up to 100,000 W/m(2).K, and the fine pored device demonstrated an orientation independence with its performance essentially unaffected by whether its evaporator was positioned above, below or level with the condenser

Найти похожие

9.
Инвентарный номер: нет.
   
   H 65


   
    High heat flux loop heat pipes / M. T. North, D. B. Sarraf, J. H. Rosenfeld, Yu. F. Maydanik, S. V. Vershinin // SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM (STAIF-97), PTS 1-3: 1ST CONFERENCE ON FUTURE SCIENCE & EARTH SCIENCE MISSIONS; 1ST CONFERENCE ON SYNERGISTIC POWER & PROPULSION SYSTEMS TECHNOLOGY; 1ST CONFERENCE ON APPLICATIONS OF THERMOPHYSICS IN MICROGRAVITY; 2ND CONFERENCE ON COMMERCIAL DEVELOPMENT OF SPACE; - 2ND CONFERENCE ON NEXT GENERATION LAUNCH SYSTEMS; 14TH SYMPOSIUM ON SPACE NUCLEAR POWER AND PROPULSION, ALBUQUERQUE, 26-30 JAN, 1997 . - 1997. - Vol.387. - С. 561-566
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPES -- THERMAL POWER LOADS -- VAPOR FLOW LOSSES
Аннотация: Loop Heat Pipes (LHPs) can transport very large thermal power loads, over long distances, through flexible, small diameter tubes and against high gravitational heads. While recent LHPs have transported as much as 1500 W, the peak heat flux through a LHP's evaporator has been limited to about 0.07 MW/m(2). This limitation is due to the arrangement of vapor passages next to the heat load which is one of the conditions necessary to ensure self priming of the device. This paper describes work aimed at raising this limit by threefold to tenfold. Two approaches were pursued. One optimized the vapor passage geometry for the high heat flux conditions. The geometry improved the heat flow into the wick and working fluid. This approach also employed a finer pored wick to support higher vapor flow losses. The second approach used a bidisperse wick material within the circumferential vapor passages. The bidisperse material increased the thermal conductivity and the evaporative surface area in the region of highest heat flux, while providing a flow path for the vapor. Proof-of-concept devices were fabricated and tested for each approach. Both devices operated as designed and both demonstrated operation at a heat flux of 0.70 MW/m(2). This performance exceeded the known state of the art by a factor of more than six for both conventional heat pipes and for loop heat pipes using ammonia. In addition, the bidisperse-wick device demonstrated boiling heat transfer coefficients up to 100,000 W/m(2) K, and the fine pored device demonstrated an orientation independence with its performance essentially unaffected by whether its evaporator was positioned above, below or level with the condenser

Найти похожие

10.
Инвентарный номер: нет.
   
   T 44


   
    The proof-of-feasibility of multiple evaporator loop heat pipes / W. B. Bienert, D. A. Wolf, M. N. Nikitkin, Yu. F. Maydanik, Y. G. Fershtater, S. V. Vershinin, J. M. Gottschlich // 6th European Symposium on Space Environmental Control Systems: Noordwijk, Netherlands, 20-22 may 1997 . - 1997. - Vol.400. - С. 393-398
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPES -- THERMAL CONTROL -- MULTIPLE THERMAL INTERFACE
Аннотация: This paper presents results that demonstrate the proof-of-feasibility of multiple evaporator Loop Heat Pipes (LHP). It was demonstrated that a multiple evaporator LHP can successfully operate as a thermal control system component. A breadboard LHP with multiple evaporators (two) that retained the reliable self starting behavior of the single thermal interface LHP was developed. Program efforts were concentrated on a two pump system and investigated the performance of the dual evaporator LHP. Analytical predictons and experimental test data are compared, and important issues are discussed that will be a baseline for continued development of multiple thermal interface LHPs. All of the conclusions are based on test results, analytic modeling and the correlation of the two. Although a mathematical model that predicts the multiple evaporator LHP behavior was developed, the primary focus of the program was the development, fabrication, and test of a breadboard multi-evaporator LHP. The program clearly demonstrated that multi-evaporator LHPs are feasible and merit further development as a viable thermal control components

Найти похожие

11.
Инвентарный номер: нет.
   
   M 19


    Maydanik, Yu. F.
    Development and Tests of Miniature Loop Heat Pipe with a Flat Evaporator / Yu. F. Maydanik, S. V. Vershinin, M. A. Chenysheva // SAE 2000 Transaction - Journal of Aerospace. - 2001. - Paper Number: 2000-01-2491
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
AMMONIA MINIATURE -- LOOP HEAT PIPE -- FLAT EVAPORATOR
Аннотация: The paper presents the results of analysis, development and tests of an ammonia miniature loop heat pipe (MLHP) with a flat evaporator, which has an active-zone diameter of 30mm. The length and the diameter of the vapor and the liquid lines are 1m and 2/1.2mm. The device serviceability has been demonstrated at a horizontal and a vertical orientation in 1-g conditions. The maximum heat load achieved on trials was equal, respectively, to 160W and 120W, which corresponds to a heat flow in the evaporation zone of 23 W/cm 2 and 17 W/cm 2 . The minimum thermal resistance at nominal heat loads from 40 to 80 W varied in the range from 0.42 W/m 2 K to 0.59 W/m 2 K. A comparison has been made with a model MLHP with a cylindrical evaporator equipped with a copper and aluminum “sa

Найти похожие

12.
Инвентарный номер: нет.
   
   M 19


    Maydanik, Yu. F.
    Development and Tests of Miniature Loop Heat Pipe with a Flat Evaporator / Yu. F. Maydanik, S. V. Vershinin, M. A. Chenysheva // SAE 2000 Transaction - Journal of Aerospace. - 2001. - Paper Number: 2000-01-2491
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
AMMONIA MINIATURE -- LOOP HEAT PIPE -- FLAT EVAPORATOR
Аннотация: The paper presents the results of analysis, development and tests of an ammonia miniature loop heat pipe (MLHP) with a flat evaporator, which has an active-zone diameter of 30mm. The length and the diameter of the vapor and the liquid lines are 1m and 2/1.2mm. The device serviceability has been demonstrated at a horizontal and a vertical orientation in 1-g conditions. The maximum heat load achieved on trials was equal, respectively, to 160W and 120W, which corresponds to a heat flow in the evaporation zone of 23 W/cm 2 and 17 W/cm 2 . The minimum thermal resistance at nominal heat loads from 40 to 80 W varied in the range from 0.42 W/m 2 K to 0.59 W/m 2 K. A comparison has been made with a model MLHP with a cylindrical evaporator equipped with a copper and aluminum “sa

Найти похожие

13.
Инвентарный номер: нет.
   
   M 73


   
    Miniature loop heat pipes for electronics cooling / V. G. Pastukhov, Yu. F. Maydanik, S. V. Vershinin, M. A. Korukov // Applied Thermal Engineering : 12th International Heat Pipe Conference Location, Russia, 19-24 may 2002 . - 2003. - Vol.23, № 9. - С. 1125-1135
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
MINIATURE LOOP HEAT PIPE -- CPU -- THERMAL RESISTANCE
Аннотация: The paper is devoted to the development of miniature loop heat pipes (mLHPs) with a nominal capacity of 25-30 W and a heat-transfer distance up to 250 mm intended for cooling electronics components and CPU of mobile PC. It gives the results of investigating several prototypes of mLHPs incorporated into remote heat exchanger (RHE) systems in different conditions. It has been established that in the nominal range of heat loads orientation does not practically affect the mLHPs operating characteristics. Under air cooling the total thermal resistance of such a system is 1.7-4.0degreesC/W and depends strongly on the cooling conditions and the radiator efficiency. In this case the mLHP's own thermal resistance is in the limits from 0.3 to 1.2degreesC/W, and the maximum capacity reaches 80-120 BT. The obtained results make it possible to regard mLHPs as quite promising devices for RHE systems providing thermal regimes for electronics components and personal computers. (C) 2003 Elsevier Science Ltd. All rights reserved

Найти похожие

14.
Инвентарный номер: нет.
   
   M 73


   
    Miniature loop heat pipes for electronics cooling / V. G. Pastukhov, Yu. F. Maydanik, S. V. Vershinin, M. A. Korukov // Applied Thermal Engineering : 12th International Heat Pipe Conference Location, Russia, 19-24 may 2002 . - 2003. - Vol.23, № 9. - С. 1125-1135
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
MINIATURE LOOP HEAT PIPE -- CPU -- THERMAL RESISTANCE
Аннотация: The paper is devoted to the development of miniature loop heat pipes (mLHPs) with a nominal capacity of 25-30 W and a heat-transfer distance up to 250 mm intended for cooling electronics components and CPU of mobile PC. It gives the results of investigating several prototypes of mLHPs incorporated into remote heat exchanger (RHE) systems in different conditions. It has been established that in the nominal range of heat loads orientation does not practically affect the mLHPs operating characteristics. Under air cooling the total thermal resistance of such a system is 1.7-4.0degreesC/W and depends strongly on the cooling conditions and the radiator efficiency. In this case the mLHP's own thermal resistance is in the limits from 0.3 to 1.2degreesC/W, and the maximum capacity reaches 80-120 BT. The obtained results make it possible to regard mLHPs as quite promising devices for RHE systems providing thermal regimes for electronics components and personal computers. (C) 2003 Elsevier Science Ltd. All rights reserved

Найти похожие

15.
Инвентарный номер: нет.
   
   M 73


   
    Miniature loop heat pipes-a promising means for cooling electronics / Yu. F. Maydanik, S. V. Vershinin, M. A. Korukov, J. M. Ochterbeck // IEEE Transactions on Components and Packaging Technologies. - 2005. - Vol.28, №2. - С. 290-296
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPES -- HEAT-TRANSFER DEVICE -- MINIATURE LOOP HEAT PIPE
Аннотация: Loop heat pipes (LHPs) are highly efficient heat-transfer devices, which have considerable advantages over conventional heat pipes. Currently, miniature LHPs (MLHPs) with masses ranging from 10-20 g and ammonia and water as working fluids have been developed and tested. The MLHPs are capable of transferring heat loads of 100-200 W for distances up to 300 mm in the temperature range 50-100°C at any orientation in 1-g conditions. The thermal resistance for these conditions are in the range from 0.1 to 0.2 K/W. The devices possess mechanical flexibility and are adaptable to different conditions of location and operation. Such characteristics of MLHPs open numerous prospects for use in cooling systems of electronics and computer systems

Найти похожие

16.
Инвентарный номер: нет.
   
   M 73


   
    Miniature loop heat pipes-a promising means for cooling electronics / Yu. F. Maydanik, S. V. Vershinin, M. A. Korukov, J. M. Ochterbeck // IEEE Transactions on Components and Packaging Technologies. - 2005. - Vol.28, №2. - С. 290-296
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPES -- HEAT-TRANSFER DEVICE -- MINIATURE LOOP HEAT PIPE
Аннотация: Loop heat pipes (LHPs) are highly efficient heat-transfer devices, which have considerable advantages over conventional heat pipes. Currently, miniature LHPs (MLHPs) with masses ranging from 10-20 g and ammonia and water as working fluids have been developed and tested. The MLHPs are capable of transferring heat loads of 100-200 W for distances up to 300 mm in the temperature range 50-100°C at any orientation in 1-g conditions. The thermal resistance for these conditions are in the range from 0.1 to 0.2 K/W. The devices possess mechanical flexibility and are adaptable to different conditions of location and operation. Such characteristics of MLHPs open numerous prospects for use in cooling systems of electronics and computer systems

Найти похожие

17.
Инвентарный номер: нет.
   
   V 50


    Vershinin, S. V.
    Investigation of pulsations of the operating temperature in a miniature loop heat pipe / S. V. Vershinin, Yu. F. Maydanik // International Journal of Heat and Mass Transfer. - 2007. - Vol.50, №25-26. - С. 5232-5240
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPE -- PULSATION HEAT -- HIGH-TEMPERATURE SUPERCONDUCTOR

Найти похожие

18.
Инвентарный номер: нет.
   
   V 50


    Vershinin, S. V.
    Hysteresis phenomena in loop heat pipes / S. V. Vershinin, Yu. F. Maydanik // Applied Thermal Engineering. - 2007. - Vol.27, №5-6. - С. 962-968
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPE -- CAPILLARY METHOD -- EVAPORATION
Аннотация: Testing of loop heat pipes (LHPs) has shown that the heat-load dependence of the operating temperature is not always unambiguous. It may have a hysteresis nature. It has been found that temperature hysteresis is connected with changes in the liquid distribution between the compensation chamber (CC) and the condenser. Analysis makes it possible to distinguish three types of temperature hysteresis. In the first case this redistribution is caused by the change in the amount of the parasitic heat flow that penetrates into the CC, which in its turn is a result of heat-transfer hysteresis in the evaporation zone. In the second, temperature hysteresis is connected with the liquid metastable state, which leads to a delay of formation of the vapor phase in the compensation chamber. The reason for hysteresis of the third type is the change of the initial liquid distribution in an LHP during a start-up

Найти похожие

19.
Инвентарный номер: нет.
   
   V 50


    Vershinin, S. V.
    Investigation of pulsations of the operating temperature in a miniature loop heat pipe / S. V. Vershinin, Yu. F. Maydanik // International Journal of Heat and Mass Transfer. - 2007. - Vol.50, №25-26. - С. 5232-5240
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPE -- PULSATION HEAT -- HIGH-TEMPERATURE SUPERCONDUCTOR

Найти похожие

20.
Инвентарный номер: нет.
   
   V 50


    Vershinin, S. V.
    Hysteresis phenomena in loop heat pipes / S. V. Vershinin, Yu. F. Maydanik // Applied Thermal Engineering. - 2007. - Vol.27, №5-6. - С. 962-968
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPE -- CAPILLARY METHOD -- EVAPORATION
Аннотация: Testing of loop heat pipes (LHPs) has shown that the heat-load dependence of the operating temperature is not always unambiguous. It may have a hysteresis nature. It has been found that temperature hysteresis is connected with changes in the liquid distribution between the compensation chamber (CC) and the condenser. Analysis makes it possible to distinguish three types of temperature hysteresis. In the first case this redistribution is caused by the change in the amount of the parasitic heat flow that penetrates into the CC, which in its turn is a result of heat-transfer hysteresis in the evaporation zone. In the second, temperature hysteresis is connected with the liquid metastable state, which leads to a delay of formation of the vapor phase in the compensation chamber. The reason for hysteresis of the third type is the change of the initial liquid distribution in an LHP during a start-up

Найти похожие

 1-20    21-38 
 

Сиглы отделов ЦНБ УрО РАН


  бр.ф. - Бронированный фонд

  бф - Научно-библиографический отдел

  БХЛ - Фонд художественной литературы

  ИИиА -Фонд исторической литературы в ЦНБ УрО РАН

  ИМЕТ -Отдел ЦНБ в Институте металлургии УрО РАН

  кх - Отдел фондов (книгохранениe)

  МБА - Межбиблиотечный абонемент

  мф - Методический фонд

  ок - Отдел научной каталогизации

  оку - Отдел комплектования и учета

  орф - Обменно-резервный фонд

  пф - Читальный зал деловой и патентной информации

  рк - Фонд редкой книги

  ч/з - Главный читальный зал

  эр - Зал электронных ресурсов

  

Сиглы библиотек институтов и НЦ УрО РАН
© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)
Яндекс.Метрика