Главная Новые поступления Описание Шлюз Z39.50

Базы данных


Труды сотрудников Института теплофизики УрО РАН - результаты поиска

Вид поиска

Область поиска
в найденном
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>A=Chernysheva, M. A.$<.>)
Общее количество найденных документов : 18
Показаны документы с 1 по 10
 1-10    11-18 
1.
Инвентарный номер: нет.
   
   M 43


    Maydanik, Yu. F.
    Review: Loop heat pipes with flat evaporators [Electronic resource] / Yu. F. Maydanik, M. A. Chernysheva, V. G. Pastukhov. - [Б. м. : б. и.]. - Систем. требования: http://www.scopus.com/record/display.url?eid=2-s2.0-84898450074&origin=resultslist&sort=plf-f&src=s&st1=Maydanik&st2=YU.+F. - 27.08.2014. - Bibliogr. : p. 306-307 (60 ref.). - Б. ц.
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
ELECTRONICS COOLING -- LOOP HEAT PIPE -- FLAT EVAPORATOR
Аннотация: The paper contains an analytical review of developments, results of tests and simulation of loop heat pipes (LHPs) with disk-shaped, rectangular and flat-oval evaporators. Two main directions have been noted in the development of flat evaporators, which may be arbitrarily separated into evaporators with opposite replenishment (EORs) and evaporators with longitudinal replenishment (ELRs). The bodies of such evaporators are made of stainless steel, copper, aluminum. For making wicks use is made of sintered powders and mesh of stainless steel, nickel, titanium, copper, polytetrafluoroethylene (PTFE) and ceramics. Monoporous and biporous capillary structures are considered. Water, ammonia, methanol, ethanol, and acetone have been tested as working fluids. The best results were shown by the combination "copper-copper-water" at temperatures above 70 °C, when on trials an evaporator thermal resistance of less than 0.01°C/W and a heat flux close to 1000 W/cm2 were achieved. For temperatures below 70°C the most efficient combination is "stainless steel-nickel-ammonia".

Найти похожие

2.
Инвентарный номер: нет.
   
   M 43


    Maydanik, Yu. F.
    Review: Loop heat pipes with flat evaporators [Electronic resource] / Yu. F. Maydanik, M. A. Chernysheva, V. G. Pastukhov. - [Б. м. : б. и.]. - Систем. требования: http://www.scopus.com/record/display.url?eid=2-s2.0-84898450074&origin=resultslist&sort=plf-f&src=s&st1=Maydanik&st2=YU.+F. - 27.08.2014. - Bibliogr. : p. 306-307 (60 ref.). - Б. ц.
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
ELECTRONICS COOLING -- LOOP HEAT PIPE -- FLAT EVAPORATOR
Аннотация: The paper contains an analytical review of developments, results of tests and simulation of loop heat pipes (LHPs) with disk-shaped, rectangular and flat-oval evaporators. Two main directions have been noted in the development of flat evaporators, which may be arbitrarily separated into evaporators with opposite replenishment (EORs) and evaporators with longitudinal replenishment (ELRs). The bodies of such evaporators are made of stainless steel, copper, aluminum. For making wicks use is made of sintered powders and mesh of stainless steel, nickel, titanium, copper, polytetrafluoroethylene (PTFE) and ceramics. Monoporous and biporous capillary structures are considered. Water, ammonia, methanol, ethanol, and acetone have been tested as working fluids. The best results were shown by the combination "copper-copper-water" at temperatures above 70 °C, when on trials an evaporator thermal resistance of less than 0.01°C/W and a heat flux close to 1000 W/cm2 were achieved. For temperatures below 70°C the most efficient combination is "stainless steel-nickel-ammonia".

Найти похожие

3.
Инвентарный номер: нет.
   
   M 43


    Maydanik, Yu. F.
    Investigation of thermal characteristics of high-capacity loop heat pipes after a long-term storage [Electronic resource] / Yu. F. Maydanik, M. A. Chernysheva, V. G. Pastukhov // Energy . - 2014. - Article in press
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
CAPACITY -- HEAT-TRANSFER SYSTEMS -- CAPILLARY STRUCTURE,
Аннотация: Repeat thermal tests of two high-capacity LHPs (loop heat pipes) have been conducted after their long-term storage under normal conditions. The first of them 1820 mm long with a capacity of 1200 W and water as a working fluid was made and first tested in 1985. The other device with a length of 2750 mm and a capacity of 800 W, which consisted of two ammonia LHPs joined in series, was made and tested for the first time in 1988. Both the devices were made of stainless steel and equipped with a titanium and nickel capillary structures. The tests, which were conducted in conditions similar to the initial ones, have shown that a long-term storage has not had any considerable impact on the LHP thermal characteristics. Such devices may be used in systems of utilization of low-potential heat and solar energy, and also for heating and cooling various objects

\\\\expert2\\nbo\\Energy\\2014, v. 74, p. 804-809.pdf
Найти похожие

4.
Инвентарный номер: нет.
   
   M 43


    Maydanik, Yu. F.
    Investigation of thermal characteristics of high-capacity loop heat pipes after a long-term storage [Electronic resource] / Yu. F. Maydanik, M. A. Chernysheva, V. G. Pastukhov // Energy . - 2014. - Article in press
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
CAPACITY -- HEAT-TRANSFER SYSTEMS -- CAPILLARY STRUCTURE,
Аннотация: Repeat thermal tests of two high-capacity LHPs (loop heat pipes) have been conducted after their long-term storage under normal conditions. The first of them 1820 mm long with a capacity of 1200 W and water as a working fluid was made and first tested in 1985. The other device with a length of 2750 mm and a capacity of 800 W, which consisted of two ammonia LHPs joined in series, was made and tested for the first time in 1988. Both the devices were made of stainless steel and equipped with a titanium and nickel capillary structures. The tests, which were conducted in conditions similar to the initial ones, have shown that a long-term storage has not had any considerable impact on the LHP thermal characteristics. Such devices may be used in systems of utilization of low-potential heat and solar energy, and also for heating and cooling various objects

\\\\expert2\\nbo\\Energy\\2014, v. 74, p. 804-809.pdf
Найти похожие

5.
Инвентарный номер: нет.
   
   C 51


    Chernysheva, M. A.
    Peculiarities of heat transfer in a flat disk-shaped evaporator of a loop heat pipe [Electronic resource] / M. A. Chernysheva, Yu. F. Maydanik // International Journal of Heat and Mass Transfer. - 2016. - Vol. 92. - С. 1026-1033. - Bibliogr. : p. 1033 (16 ref.)
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPES -- POROUS MATERIAL -- EVAPORATOR
Аннотация: Two models of a flat disk-shaped evaporator of a loop heat pipe have been developed for analyzing the effect of the convective component on heat transfer in a wick, and also on heat-exchange processes in an evaporation zone. Simulation data were obtained for two evaporators. The first evaporator was made entirely of copper, and the second had a body of stainless steel and a nickel wick. The geometrical dimensions of the evaporators were equal. The diameter of the heating zone was 30 mm. Calculations were made for heat fluxes from 2.8 ⋅ 104 to 4.2 ⋅ 105 W/m2. Water was used as a working fluid. An analysis of the results has shown that the contribution of the convective component to the overall heat transfer is small. The higher the thermal conductivity of the wick, the smaller the effect that the convection has on the temperature distribution in the evaporator.

\\\\expert2\\nbo\\International Journal of Heat and Mass Transfer\\2016, v. 92, p.1026-1033.pdf
Найти похожие

6.
Инвентарный номер: нет.
   
   C 51


    Chernysheva, M. A.
    Peculiarities of heat transfer in a flat disk-shaped evaporator of a loop heat pipe [Electronic resource] / M. A. Chernysheva, Yu. F. Maydanik // International Journal of Heat and Mass Transfer. - 2016. - Vol. 92. - С. 1026-1033. - Bibliogr. : p. 1033 (16 ref.)
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPES -- POROUS MATERIAL -- EVAPORATOR
Аннотация: Two models of a flat disk-shaped evaporator of a loop heat pipe have been developed for analyzing the effect of the convective component on heat transfer in a wick, and also on heat-exchange processes in an evaporation zone. Simulation data were obtained for two evaporators. The first evaporator was made entirely of copper, and the second had a body of stainless steel and a nickel wick. The geometrical dimensions of the evaporators were equal. The diameter of the heating zone was 30 mm. Calculations were made for heat fluxes from 2.8 ⋅ 104 to 4.2 ⋅ 105 W/m2. Water was used as a working fluid. An analysis of the results has shown that the contribution of the convective component to the overall heat transfer is small. The higher the thermal conductivity of the wick, the smaller the effect that the convection has on the temperature distribution in the evaporator.

\\\\expert2\\nbo\\International Journal of Heat and Mass Transfer\\2016, v. 92, p.1026-1033.pdf
Найти похожие

7.
Инвентарный номер: нет.
   
   C 51


    Chernysheva, M. A.
    Numerical simulation of transient heat and mass transfer in a cylindrical evaporator of a loop heat pipe / M. A. Chernysheva, Yu. F. Maydanik // International Journal of Heat and Mass Transfer. - 2008. - Vol.51, №17-18. - С. 4204-4215
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPE -- LHP START-UP -- BOILING-UP
Аннотация: The paper investigates the transient processes of heat and mass transfer in a cylindrical evaporator of a loop heat pipe (LHP) during the device start-up. One of the most “arduous” prestart situations, which is characterized by the absence of a liquid in the evaporator central core and filled vapor removal channels, has been considered. With such liquid distribution a successful start-up of an LHP becomes possible only after formation of the vapor phase in the vapor removal channels and their liberation from the liquid. The aim of the investigations is to determine conditions that ensure the boiling-up of a working fluid in vapor removal channels. The problem was solved by a numerical method. Simulation of start-up regimes has been performed for different heat loads and different structural materials of the evaporator. Copper, titanium and nickel wick have been examined. Calculations have been made for three different working fluids; water, ammonia and acetone. Account has been taken of the conditions of heat exchange between the compensation chamber and surrounding medium

Найти похожие

8.
Инвентарный номер: нет.
   
   C 51


    Chernysheva, M. A.
    Numerical simulation of transient heat and mass transfer in a cylindrical evaporator of a loop heat pipe / M. A. Chernysheva, Yu. F. Maydanik // International Journal of Heat and Mass Transfer. - 2008. - Vol.51, №17-18. - С. 4204-4215
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
LOOP HEAT PIPE -- LHP START-UP -- BOILING-UP
Аннотация: The paper investigates the transient processes of heat and mass transfer in a cylindrical evaporator of a loop heat pipe (LHP) during the device start-up. One of the most “arduous” prestart situations, which is characterized by the absence of a liquid in the evaporator central core and filled vapor removal channels, has been considered. With such liquid distribution a successful start-up of an LHP becomes possible only after formation of the vapor phase in the vapor removal channels and their liberation from the liquid. The aim of the investigations is to determine conditions that ensure the boiling-up of a working fluid in vapor removal channels. The problem was solved by a numerical method. Simulation of start-up regimes has been performed for different heat loads and different structural materials of the evaporator. Copper, titanium and nickel wick have been examined. Calculations have been made for three different working fluids; water, ammonia and acetone. Account has been taken of the conditions of heat exchange between the compensation chamber and surrounding medium

Найти похожие

9.
Инвентарный номер: нет.
   
   C 51


    Chernysheva, M. A.
    Heat transfer during condensation of moving steam in a narrow channel / M. A. Chernysheva, S. V. Vershinin, Yu. F. Maydanik // International Journal of Heat and Mass Transfer. - 2009. - Vol.52, №11-12. - С. 2437-2443
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
INTUBE CONDENSATION -- TWO-PHASE FLOW -- LOOP HEAT PIPE
Аннотация: The paper presents the results of experimental investigation of heat transfer and hydrodynamics during condensation of moving steam in a narrow channel of square cross-section 2 mm × 2 mm. The channel had a serpentine shape, the channel length was 660 mm. An experimental cell simulated conditions of heat transfer in the condenser of loop heat pipes. The steam velocity at the channel inlet ranged from 13 to 52 m/s, the pressure was 1 atm. The temperature of the cooling water varied from 70 to 95 °C. The annular flow pattern was noted in the whole range of the regime parameters. There was a clear boundary between the condensation zone and the zone occupied by the condensed phase downstream. Temperature has measured along the channel, and the heat-transfer coefficients have been determined. The coefficient values varied from 10,000 to 55,000 W/K m2 depending on the steam velocity at the channel inlet and the cooling temperature. The efficiency of the condenser – heat exchanger has been investigated

Найти похожие

10.
Инвентарный номер: нет.
   
   C 51


    Chernysheva, M. A.
    Heat transfer during condensation of moving steam in a narrow channel / M. A. Chernysheva, S. V. Vershinin, Yu. F. Maydanik // International Journal of Heat and Mass Transfer. - 2009. - Vol.52, №11-12. - С. 2437-2443
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
INTUBE CONDENSATION -- TWO-PHASE FLOW -- LOOP HEAT PIPE
Аннотация: The paper presents the results of experimental investigation of heat transfer and hydrodynamics during condensation of moving steam in a narrow channel of square cross-section 2 mm × 2 mm. The channel had a serpentine shape, the channel length was 660 mm. An experimental cell simulated conditions of heat transfer in the condenser of loop heat pipes. The steam velocity at the channel inlet ranged from 13 to 52 m/s, the pressure was 1 atm. The temperature of the cooling water varied from 70 to 95 °C. The annular flow pattern was noted in the whole range of the regime parameters. There was a clear boundary between the condensation zone and the zone occupied by the condensed phase downstream. Temperature has measured along the channel, and the heat-transfer coefficients have been determined. The coefficient values varied from 10,000 to 55,000 W/K m2 depending on the steam velocity at the channel inlet and the cooling temperature. The efficiency of the condenser – heat exchanger has been investigated

Найти похожие

 1-10    11-18 
 

Сиглы отделов ЦНБ УрО РАН


  бр.ф. - Бронированный фонд

  бф - Научно-библиографический отдел

  БХЛ - Фонд художественной литературы

  ИИиА -Фонд исторической литературы в ЦНБ УрО РАН

  ИМЕТ -Отдел ЦНБ в Институте металлургии УрО РАН

  кх - Отдел фондов (книгохранениe)

  МБА - Межбиблиотечный абонемент

  мф - Методический фонд

  ок - Отдел научной каталогизации

  оку - Отдел комплектования и учета

  орф - Обменно-резервный фонд

  пф - Читальный зал деловой и патентной информации

  рк - Фонд редкой книги

  ч/з - Главный читальный зал

  эр - Зал электронных ресурсов

  

Сиглы библиотек институтов и НЦ УрО РАН
© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)
Яндекс.Метрика