Главная Новые поступления Описание Шлюз Z39.50

Базы данных


Труды сотрудников Института теплофизики УрО РАН - результаты поиска

Вид поиска

Область поиска
 Найдено в других БД:Каталог книг и продолжающихся изданий (137)Сводный каталог иностранных периодических изданий, имеющихся в библиотеках УрО РАН (1)Публикации об УрО РАН (4)Нанотехнологии (4)Труды сотрудников Института органического синтеза УрО РАН (2)Труды сотрудников ЦНБ УрО РАН (1)Публикации Чарушина В.Н. (1)Каталог библиотеки ИЭРиЖ УрО РАН (2)Библиометрия (5)
Формат представления найденных документов:
полныйинформационныйкраткий
Отсортировать найденные документы по:
авторузаглавиюгоду изданиятипу документа
Поисковый запрос: (<.>K=ELSEVIER<.>)
Общее количество найденных документов : 6
Показаны документы с 1 по 6
1.
Инвентарный номер: нет.
   
   M 73


   
    Miniature loop heat pipes for electronics cooling / V. G. Pastukhov, Yu. F. Maydanik, S. V. Vershinin, M. A. Korukov // Applied Thermal Engineering : 12th International Heat Pipe Conference Location, Russia, 19-24 may 2002 . - 2003. - Vol.23, № 9. - С. 1125-1135
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
MINIATURE LOOP HEAT PIPE -- CPU -- THERMAL RESISTANCE
Аннотация: The paper is devoted to the development of miniature loop heat pipes (mLHPs) with a nominal capacity of 25-30 W and a heat-transfer distance up to 250 mm intended for cooling electronics components and CPU of mobile PC. It gives the results of investigating several prototypes of mLHPs incorporated into remote heat exchanger (RHE) systems in different conditions. It has been established that in the nominal range of heat loads orientation does not practically affect the mLHPs operating characteristics. Under air cooling the total thermal resistance of such a system is 1.7-4.0degreesC/W and depends strongly on the cooling conditions and the radiator efficiency. In this case the mLHP's own thermal resistance is in the limits from 0.3 to 1.2degreesC/W, and the maximum capacity reaches 80-120 BT. The obtained results make it possible to regard mLHPs as quite promising devices for RHE systems providing thermal regimes for electronics components and personal computers. (C) 2003 Elsevier Science Ltd. All rights reserved

Найти похожие

2.
Инвентарный номер: нет.
   
   B 16


    Baidakov, V. G.
    Metastable extension of the melting line and the critical endpoint / V. G. Baidakov, S. P. Protsenko, O. A. Tipeev // Journal of Non-Crystalline Solids : 9th International Symposium on Crystallization in Glasses and Liquids Location, Foz do Iguacu, BRAZIL, 10-13 sep. , 2009 . - 2009. - Vol.356, №52-54. - С. 2923-2927
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
MOLECULAR-DYNAMICS SIMULATION -- LENNARD-JONES SYSTEM -- NEGATIVE PRESSURES
Аннотация: Molecular-dynamics methods have been employed to calculate the (p, rho, T)-properties and the internal energy of the Lennard-Jones crystal and liquid phases in both stable and metastable states to the boundaries of limiting supersaturations. Thermal and caloric equations of state have been formulated for determining the parameters of phase equilibrium and approximating the boundaries of essential instability (the spinodal curves). The results of calculations of phase equilibrium parameters from the condition of chemical potentials equality show that the melting line in the region of its metastable extension approaches the spinodal of a stretched liquid. The point of contact (the critical endpoint) is characterized by the following parameter values: T*(m)= 0.5286, p*(m) = -1.7128, rho*(m,l) = 0.7374, rho*(m,c) = 0.9423. The melting line and its metastable extension were also calculated by simulations of two-phase liquid-crystal systems. A comparison of these two approaches has been performed. (C) 2010 Elsevier B.V. All rights reserved

Найти похожие

3.
Инвентарный номер: нет.
   
   C 51


    Chernysheva, M. A.
    Analysis of heat exchange in the compensation chamber of a loop heat pipe [Электронный ресурс] / M. A. Chernysheva, V. G. Pastukhov, Yu. F. Maydanik // Energy . - 2013. - Article in Press
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
COMPENSATION CHAMBER -- FLAT EVAPORATOR -- HEAT-AND-MASS TRANSFER -- LOOP HEAT PIPES
Аннотация: A three-dimensional heat-and-mass transfer model of a flat evaporator of a loop heat pipe has been developed for investigating heat-and-mass in a compensation chamber filled with a liquid. Numerical simulation was implemented using EFDLab® software package in order to predict the temperature distribution of the flat evaporator of a copper-water LHP (loop heat pipe) as well as the flow streamline and velocity field in the compensation chamber as a function of heat load. A computer simulation makes it possible to evaluate the heat exchange at the inner surface of the compensation chamber. Heat exchange data were used as a boundary condition in researching the problem of the drying effect of a wick and a transformation of the evaporating front in the active zone of the flat evaporator. © 2013 Elsevier Ltd. All rights reserved

Найти похожие

4.
Инвентарный номер: нет.
   
   M 73


   
    Miniature loop heat pipes for electronics cooling / V. G. Pastukhov, Yu. F. Maydanik, S. V. Vershinin, M. A. Korukov // Applied Thermal Engineering : 12th International Heat Pipe Conference Location, Russia, 19-24 may 2002 . - 2003. - Vol.23, № 9. - С. 1125-1135
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
MINIATURE LOOP HEAT PIPE -- CPU -- THERMAL RESISTANCE
Аннотация: The paper is devoted to the development of miniature loop heat pipes (mLHPs) with a nominal capacity of 25-30 W and a heat-transfer distance up to 250 mm intended for cooling electronics components and CPU of mobile PC. It gives the results of investigating several prototypes of mLHPs incorporated into remote heat exchanger (RHE) systems in different conditions. It has been established that in the nominal range of heat loads orientation does not practically affect the mLHPs operating characteristics. Under air cooling the total thermal resistance of such a system is 1.7-4.0degreesC/W and depends strongly on the cooling conditions and the radiator efficiency. In this case the mLHP's own thermal resistance is in the limits from 0.3 to 1.2degreesC/W, and the maximum capacity reaches 80-120 BT. The obtained results make it possible to regard mLHPs as quite promising devices for RHE systems providing thermal regimes for electronics components and personal computers. (C) 2003 Elsevier Science Ltd. All rights reserved

Найти похожие

5.
Инвентарный номер: нет.
   
   B 16


    Baidakov, V. G.
    Metastable extension of the melting line and the critical endpoint / V. G. Baidakov, S. P. Protsenko, O. A. Tipeev // Journal of Non-Crystalline Solids : 9th International Symposium on Crystallization in Glasses and Liquids Location, Foz do Iguacu, BRAZIL, 10-13 sep. , 2009 . - 2009. - Vol.356, №52-54. - С. 2923-2927
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
MOLECULAR-DYNAMICS SIMULATION -- LENNARD-JONES SYSTEM -- NEGATIVE PRESSURES
Аннотация: Molecular-dynamics methods have been employed to calculate the (p, rho, T)-properties and the internal energy of the Lennard-Jones crystal and liquid phases in both stable and metastable states to the boundaries of limiting supersaturations. Thermal and caloric equations of state have been formulated for determining the parameters of phase equilibrium and approximating the boundaries of essential instability (the spinodal curves). The results of calculations of phase equilibrium parameters from the condition of chemical potentials equality show that the melting line in the region of its metastable extension approaches the spinodal of a stretched liquid. The point of contact (the critical endpoint) is characterized by the following parameter values: T*(m)= 0.5286, p*(m) = -1.7128, rho*(m,l) = 0.7374, rho*(m,c) = 0.9423. The melting line and its metastable extension were also calculated by simulations of two-phase liquid-crystal systems. A comparison of these two approaches has been performed. (C) 2010 Elsevier B.V. All rights reserved

Найти похожие

6.
Инвентарный номер: нет.
   
   C 51


    Chernysheva, M. A.
    Analysis of heat exchange in the compensation chamber of a loop heat pipe [Электронный ресурс] / M. A. Chernysheva, V. G. Pastukhov, Yu. F. Maydanik // Energy . - 2013. - Article in Press
ББК 53
Рубрики: ФИЗИКА
Кл.слова (ненормированные):
COMPENSATION CHAMBER -- FLAT EVAPORATOR -- HEAT-AND-MASS TRANSFER -- LOOP HEAT PIPES
Аннотация: A three-dimensional heat-and-mass transfer model of a flat evaporator of a loop heat pipe has been developed for investigating heat-and-mass in a compensation chamber filled with a liquid. Numerical simulation was implemented using EFDLab® software package in order to predict the temperature distribution of the flat evaporator of a copper-water LHP (loop heat pipe) as well as the flow streamline and velocity field in the compensation chamber as a function of heat load. A computer simulation makes it possible to evaluate the heat exchange at the inner surface of the compensation chamber. Heat exchange data were used as a boundary condition in researching the problem of the drying effect of a wick and a transformation of the evaporating front in the active zone of the flat evaporator. © 2013 Elsevier Ltd. All rights reserved

Найти похожие

 

Сиглы отделов ЦНБ УрО РАН


  бр.ф. - Бронированный фонд

  бф - Научно-библиографический отдел

  БХЛ - Фонд художественной литературы

  ИИиА -Фонд исторической литературы в ЦНБ УрО РАН

  ИМЕТ -Отдел ЦНБ в Институте металлургии УрО РАН

  кх - Отдел фондов (книгохранениe)

  МБА - Межбиблиотечный абонемент

  мф - Методический фонд

  ок - Отдел научной каталогизации

  оку - Отдел комплектования и учета

  орф - Обменно-резервный фонд

  пф - Читальный зал деловой и патентной информации

  рк - Фонд редкой книги

  ч/з - Главный читальный зал

  эр - Зал электронных ресурсов

  

Сиглы библиотек институтов и НЦ УрО РАН
© Международная Ассоциация пользователей и разработчиков электронных библиотек и новых информационных технологий
(Ассоциация ЭБНИТ)
Яндекс.Метрика