Zero-point energies (ZPE) of intermolecular, non-bonded vibrations and isotope effects, induced by noncovalent interactions, are computed for paramagnetic molecules. They appear to be not significant for complexation of HO2 and oxygen with C–H bonds and results to isotope effect, which deviates from unit by 5–10%. However, ZPE and isotope effects in complexes of HO2 and nitroxyl radicals with water are larger and reach 50–70%. The largest effect, about 12, is found for complexation of hydrogen atom with water. Complexation of nitroxyl and peroxy radicals by hydrogen bonds is accompanied by transfer of spin density of unpaired electron from radical to the ligand molecules and induces high field paramagnetic shifts of the ligand NMR lines. It evidences that the spin transfer via intermolecular bonds occurs by mechanism of spin polarization.