Приведены новые результаты по конструированию внешних штрафных функций повышенной гладкости в линейном программировании и по построению на их основе итерационных методов с автоматическим согласованием их параметров. Новые конструкции, подобно внутренним штрафным функциям, позволяют применять методы оптимизации второго порядка и в то же время не требуют знания хотя бы одной внутренней допустимой точки исходной задачи для своего старта. Более того, новые штрафные функции могут быть применены и к несобственным задачам линейного программирования (задачам с противоречивыми системами ограничений), для которых они способны вырабатывать обобщенные (компромиссные) решения. Приведены теоремы сходимости и данные численных экспериментов.
New results are presented on the construction of exterior penalty functions of Increased smoothness in linear programming and on the construction of iterative methods on their basis with automatic matching of their parameters. New constructions, similarly to interior penalty functions, make it possible to use second-order optimisation methods and at the same time do not require knowledge of at least one interior admissible point of the original problem for the start of the operation. Moreover, the new penalty functions can also be applied to improper linear programming problems (problems with inconsistent constraint systems), for which they can produce generalized (compromise) solutions. Convergence theorems are proved and data of numerical experiments are presented.