Рассматривается вырожденная задача стабилизации линейной автономной системы дифференциальных уравнений с запаздыванием и импульсными управлениями. Для ее регуляризации используется невырожденный критерий качества переходных процессов» близкий к вырожденному. Применяется преобразование регуляризованной задачи стабилизации для импульсных управлений к вспомогательной невырожденной задаче оптимальной стабилизации для не импульсных управлений, содержащих запаздывание. При решении вспомогательной задачи используется принцип динамического программирования Беллмана. При нахождении определяющей системы уравнений для коэффициентов квадратичного функционала Беллмана осуществляется постановка задачи оптимальной стабилизации в функциональных пространствах состояний и управлений. Получено представление для импульса оптимального стабилизирующего управления. Сложная задача нахождения решения определяющей системы уравнений для функционала Беллмана заменяется задачей нахождения решения определяющей системы уравнений для коэффициентов представления оптимального стабилизирующего управления. Последняя задача имеет меньшую размерность. Найдена асимптотическая зависимость оптимального стабилизирующего управления от параметра регуляризации, когда размерность вектора управления совпадает с размерностью вектора состояний.
A degenerate problem of stabilizing a linear autonomous system of differential equations with time delay and impulse controls is considered. A nondegenerate criterion for the quality of transient processes, close to a degenerate one, is used for its regularization. The regularized stabilization problem for impulse controls is replaced by an auxiliary non-degenerate optimal stabilization problem for non- impulse controls containing time delay. Bellman’s dynamic programming principle is used to solve the auxiliary problem. When finding the governing system of equations for the coefficients of the quadratic Bellman functional, the formulation of the optimal stabilization problem in the functional spaces of states and controls is used. A representation is obtained for the impulse of the optimal stabilizing control. The difficult problem of finding a solution to the governing system of equations for the Bellman functional is replaced by the problem of finding a solution to the governing system of equations for the coefficients of the representation of the optimal stabilising control. The latter problem has a lower dimension. The asymptotic dependence of the optimal stabilizing control on the regularization parameter is found when the dimension of the control vector coincides with the dimension of the state vector.