ПИ 1560/вс

310CHEMISTRY including biophysical chemistry & molecular biology

JANUARY 21, 2014 • VOLUME 53 NUMBER 2

JANUARY 21, 2014 VOLUME 53 ISSUE 2

BICHAW 53(2) 279-446 (2014)

ISSN 0006-2960

Registered in the U.S. Patent and Trademark Office © 2014 by the American Chemical Society

ON THE COVER: Three-dimensional structure of the *Escherichia coli* aspartate transcarbamoylase holoenzyme in the Rstate with two ATP molecules and a Mg²⁺ cation bound to each regulatory chain. The two catalytic trimers are shown as surface representations (tan). One chain of each of the three regulatory dimers is colored yellow, while the other is colored green. The two regulatory dimers on the sides are shown as surface representations, while the third, in front, is shown as a ribbon trace. The binding of the two ATP molecules and one Mg²⁺ molecule induces an alteration of the N-termini of the regulatory chains (thick lines), displacing them into the adjacent regulatory chain and thereby strengthening the dimer interface and further stabilizing the R state of the enzyme. This figure was generated using UCSF Chimera. [Cockrell, G. M., et al. (2013) *Biochemistry* 52, 8036–8047]

Rapid Reports

279

3

dx.doi.org/10.1021/bi401427t

A Four-Amino Acid Linker between Repeats in the α -Synuclein Sequence Is Important for Fibril Formation Volodymyr V. Shvadchak and Vinod Subramaniam*

Articles

282

dx.doi.org/10.1021/bi401277w

Next Generation Sequencing-Based Parallel Analysis of Melting Kinetics of 4096 Variants of a Bacterial Promoter Ewa Heyduk and Tomasz Heyduk*

293

dx.doi.org/10.1021/bi401479a

Defining the Oligomerization State of γ-Synuclein in Solution and in Cells Urszula Golebiewska,* Cassandra Zurawsky, and Suzanne Scarlata

Binding to partners or membranes disrupts the oligomers

300

dx.doi.org/10.1021/bi401164k

pH Dependence of Amylin Fibrillization

Suman Jha, Jessica M. Snell, Sarah R. Sheftic, Sharadrao M. Patil, Stephen B. Daniels, Frederick W. Kolling, and Andrei T. Alexandrescu*

311

dx.doi.org/10.1021/bi401497h

NMR Structure of the HWE Kinase Associated Response Regulator Sma0114 in Its Activated State Sarah R. Sheftic, Emma White, Daniel J. Gage, and Andrei T. Alexandrescu*

323

dx.doi.org/10.1021/bi401576k

Primary and Secondary Dimer Interfaces of the Fibroblast Growth Factor Receptor 3 Transmembrane Domain: Characterization via Multiscale Molecular Dynamics Simulations

Tyler Reddy, Santiago Manrique, Amanda Buyan, Benjamin A. Hall, Alan Chetwynd, and Mark S. P. Sansom*

6 333

dx.doi.org/10.1021/bi4014769

Turnover-Dependent Inactivation of the Nitrogenase MoFe-Protein at High pH Kun-Yun Yang, Chad A. Haynes, Thomas Spatzal, Douglas C. Rees,* and James B. Howard*

344

dx.doi.org/10.1021/bi4014566

Strong, Low-Barrier Hydrogen Bonds May Be Available to Enzymes Jacob D. Graham, Allyson M. Buytendyk, Di Wang, Kit H. Bowen,* and Kim D. Collins*

7A

dx.doi.org/10.1021/bi401236c

Drosophila Myosin-XX Functions as an Actin-Binding Protein To Facilitate the Interaction between Zyx102 and Actin Yang Cao, Howard D. White, and Xiang-dong Li*

361

6

dx.doi.org/10.1021/bi401404u

Acrolein Modification Impairs Key Functional Features of Rat Apolipoprotein E: Identification of Modified Sites by Mass Spectrometry

Tuyen N. Tran, Malathi G. Kosaraju, Shiori Tamamizu-Kato, Olayemi Akintunde, Ying Zheng, John K. Bielicki, Kent Pinkerton, Koji Uchida, Yuan Yu Lee,* and Vasanthy Narayanaswami*

376

6 0

dx.doi.org/10.1021/bi4013947

413

423

Retinal Ligand Mobility Explains Internal Hydration and Reconciles Active Rhodopsin Structures
Nicholas Leioatts, Blake Mertz, Karina Martínez-Mayorga, Tod D. Romo, Michael C. Pitman, Scott E. Feller, Alan Grossfield,* and
Michael F. Brown*

386 dx.doi.org/10.1021/bi401406p

Entry of Cell-Penetrating Peptide Transportan 10 into a Single Vesicle by Translocating Across Lipid Membrane and Its Induced Pores

Md. Zahidul Islam, Hirotaka Ariyama, Jahangir Md. Alam, and Masahito Yamazaki*

397 §

Diverse Levels of Sequence Selectivity and Catalytic Efficiency of Protein-Tyrosine Phosphatases
Nicholas G. Selner, Rinrada Luechapanichkul, Xianwen Chen, Benjamin G. Neel, Zhong-Yin Zhang, Stefan Knapp, Charles E. Bell,

\$ dx.doi.org/10.1021/bi401529y

Orchestration of Enzymatic Processing by Thiazole/Oxazole-Modified Microcin Dehydrogenases Joel O. Melby, Xiangpo Li, and Douglas A. Mitchell*

dx.doi.org/10.1021/bi401540g

DEAD-Box Helicases Form Nucleotide-Dependent, Long-Lived Complexes with RNA Fei Liu, Andrea A. Putnam, and Eckhard Jankowsky*

9A

dx.doi.org/10.1021/bi401223r

6 434

Targeted Reengineering of Protein Geranylgeranyltransferase Type | Selectivity Functionally Implicates Active-Site Residues in Protein-Substrate Recognition

Soumyashree A. Gangopadhyay, Erica L. Losito, and James L. Hougland*

