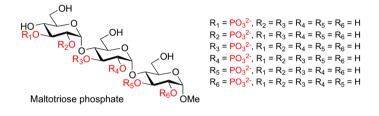


Contents lists available at SciVerse ScienceDirect

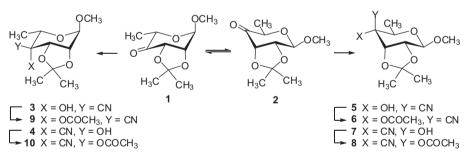
Carbohydrate Research

journal homepage: www.elsevier.com/locate/carres

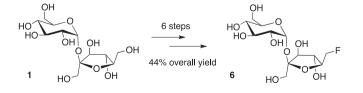

Carbohydrate Research Vol. 369, 2013

Contents

FULL PAPERS


Synthesis

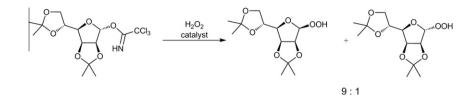
Synthesis of a series of maltotriose phosphates with an evaluation of the utility of a fluorous phosphate protecting group pp 14–24 Lin Liu, Nicola L.B. Pohl*


Cyanohydrins from methyl 6-deoxy-2,3-O-isopropylidene-α-*L-lyxo*-hexofuranosid-4-ulose via Bucherer–Bergs and Strecker reactions

Bohumil Steiner, Vratislav Langer, Maroš Bella, Miroslav Koóš*

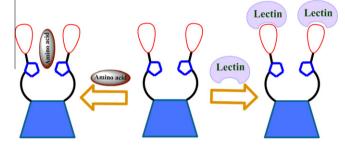
Synthesis of 6'-deoxy-6'-fluorosucrose

Vikram Gaddam, Michael Harmata*

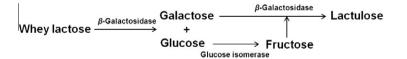

pp 38-41

pp 31-37

Glycosyl hydroperoxides


Barbara Szechner, Bartłomiej Furman, Marek Chmielewski*

pp 25-30


Triazole linked lower rim glycosyl appended 1,3-calix[4]arene conjugates: Synthesis, characterization, and their pp 58–62 interaction with jacalin

Jugun Prakash Chinta, Chebrolu P. Rao*

Biochemistry and Enzymes

Optimization of lactulose synthesis from whey lactose by immobilized β-galactosidase and glucose isomerasepp 1–5Yoon-Seok Song, Hee-Uk Lee, Chulhwan Park, Seung-Wook Kim*

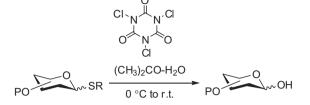
Lactulose was synthesized from whey lactose without supplying fructose by immobilized β-galactosidase and glucose isomerase.

Polysaccharides

Structure of the O-antigen of the lipopolysaccharide isolated from *Pantoea ananatis* AEP17, a rhizobacterium associated with rice

Rocío Contreras Sánchez-Matamoros, Antonio M. Gil Serrano, Pilar Tejero-Mateo, Javier Ollero, Esaú Megías Saavedra, Miguel A. Rodríguez-Carvajal*

$$\begin{vmatrix} \mathbf{F} & \mathbf{C} & \mathbf{A} & \mathbf{E} & \mathbf{D} \\ \rightarrow 3) \cdot \beta \cdot \mathbf{D} \cdot \mathbf{GlcpNAc} \cdot (1 \rightarrow 3) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 3) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot (1 \rightarrow 2) \cdot \alpha \cdot \mathbf{L} \cdot \mathbf{Rhap} \cdot \mathbf{$$

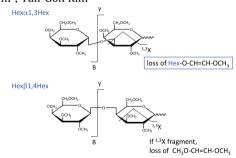

pp 10-13

pp 42-47

NOTES

Synthesis

Trichloroisocyanuric acid (TCCA): an efficient green reagent for activation of thioglycosides toward hydrolysis Nabamita Basu, Sajal Kumar Maity, Aritra Chaudhury, Rina Ghosh*



An α -selective, visible light photocatalytic glycosylation of alcohols with selenoglycosides Mark Spell, Xiaoping Wang, Amir E. Wahba, Elizabeth Conner, Justin Ragains^{*}

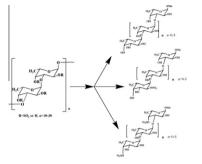
Bn0 Bn0 SePh ROH CBr₄ OBn Bn0 SePh ROH CBr₄ α-selective organocatalytic

Characterization, Naturalproducts

Structural characterization of α-galactosylated 0-glycans from miniature pig kidney and endothelial cells Hae-Min Park, Yung-Hun Yang, Byung-Gee Kim^{*}, Yun-Gon Kim^{*}

Polysaccharides

The capsular polysaccharide and lipopolysaccharide structures of two carbapenem resistant *Klebsiella pneumoniae* outbreak isolates


Joanna Kubler-Kielb^{*}, Evgeny Vinogradov, Weng-Ian Ng, Beata Maczynska, Adam Junka, Marzenna Bartoszewicz, Adrian Zelazny, John Bennett, Rachel Schneerson

-[-2- α -L-Rha-2- α -L-Rha-3- β -D-Gal-3- α -D-GalA-]_n- |4 α -L-Rha

pp 48-53

pp 6-9

Structural analysis of sulfated fucan from *Saccharina japonica* by electrospray ionization tandem mass spectrometry pp 63–67 Weihua Jin, Zhimou Guo, Jing Wang, Wenjing Zhang, Quanbin Zhang*

*Corresponding author

(*D*⁺ Supplementary data available via SciVerse ScienceDirect

COVER

Multi-functionalisation of cyclodextrins (CD) has entered a new era thanks to the regioselective chemistry developed by M. Sollogoub's group. As illustrated on the cover, many applications can now be reached using CDs with various functions on specific positions. An example of functionalisation of CDs is given in the first issue of this journal. Image realised by Mickaël Ménand.

Available online at www.sciencedirect.com

SciVerse ScienceDirect

Abstracted/Indexed in: Chem. Abstr.: Curr. Contents: Phys., Chem. & Earth Sci. Life Sci. Current Awareness in Bio. Sci. (CABS). Science Citation Index. Full texts are incorporated in CJELSEVIER, a file in the Chemical Journals Online database which is available on STN[®] International. Also covered in the abstract and citation database SciVerse Scopus[®]. Full text available on SciVerse ScienceDirect[®]

ISSN 0008-6215