

ECOLOGICAL MODELLING

An International Journal on **ECOLOGICAL MODELLING AND SYSTEMS ECOLOGY**

Editor-in-chief **Brian D. Fath**

Ecological Modelling

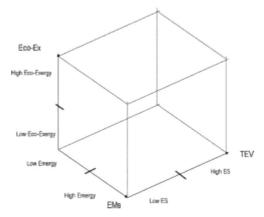
Volume 258, Pages 1-134 (10 June 2013)

1

Editorial Board

Page iii

Articles


2

Thermodynamics-based categorization of ecosystems in a socio-ecological context Original Research Article

Pages 1-8

Luca Coscieme, Federico M. Pulselli, Sven E. Jørgensen, Simone Bastianoni, Nadia Marchettini

Graphical abstract

3

Sum of heterogeneous blind zones predict movements of simulated groups

Original Research Article

Pages 9-15

William L. Romey, Jose M. Vidal

Highlights

We model groups of animals composed of different ratios of blind zones.
 ▶ We measure the emergent movement of homogeneous and heterogeneous groups.
 ▶ Groups with a 60 degree blind zone had anomalous behaviors.
 ▶ In homogeneous groups, increased blind zones led to groups that were: smaller, longer, and denser.
 ▶ In heterogeneous groups, increased sum of blind zones predicted groups that were: smaller, longer, and denser.

4

Sensitivity analysis and pattern-oriented validation of TRITON, a model with alternative community states: Insights on temperate rocky reefs dynamics

Original Research Article

Pages 16-32

Martin P. Marzloff, Craig R. Johnson, L. Rich Little, Jean-Christophe Soulié, Scott D. Ling, Stewart D. Frusher

Highlights

We develop a model of Tasmanian rocky reefs with alternative community states.
 ► Through a model-independent sensitivity analysis, we identify influential parameters.
 ► We address model uncertainty to adopt a robust modelling framework prior to its application.
 ► The model is validated and calibrated against patterns observed across Tasmanian reefs.
 ► The model helps to discern among management options in response to urchin overgrazing.

5

Migration and niche partitioning simultaneously increase species richness and rarity

Original Research Article

Pages 33-39

Dexiecuo Ai, Chengjin Chu, M.D. Farnon Ellwood, Rui Hou, Gang Wang

6**厂**

An individual-based model for the migration of pike (*Esox lucius*) in the river Yser, Belgium

Original Research Article

Pages 40-52

J.M. Baetens, S. Van Nieuland, I.S. Pauwels, B. De Baets, A.M. Mouton, P.L.M. Goethals

7

The mean function provides robustness to linear inverse modelling flow estimation in food webs: A comparison of functions derived from statistics and ecological theories

Original Research Article

Pages 53-64

B. Saint-Béat, A.F. Vézina, R. Asmus, H. Asmus, N. Niquil

Highlights

► MCMC-LIM is a method for estimating possible values for all flows within a food web. ► The question is then how to determine the best solution among possible values. ► Robustness was tested for 3 statistical and 7 ecological goal functions for this choice. ► The mean function was the most robust and we recommend its use in future research.

8

Contrasting specialization-stability relationships in plant-animal mutualistic systems

Original Research Article

Pages 65-73

Gita Benadi, Nico Blüthgen, Thomas Hovestadt, Hans-Joachim Poethke

9**厂**

Interactions at large spatial scale: The case of *Centris* bees and floral oil producing plants in South America

Original Research Article

Pages 74-81

T.C. Giannini, C.E. Pinto, A.L. Acosta, M. Taniguchi, A.M. Saraiva, I. Alves-dos-Santos

10

Simulation modelling of dissolved organic matter removal in a free water surface constructed wetland

Original Research Article

Pages 82-90

Thiwari Ophithakorn, Chaisri Suksaroj, Thunwadee Tachapattaworakul Suksaroj

11

Converting conventional ecological datasets in dynamic and dynamic spatially explicit simulations: Current advances and future applications of the Stochastic Dynamic Methodology (StDM)

Review Article

Pages 91-100

Mário Santos, Rita Bastos, João Alexandre Cabral

12

Modeling zooplankton growth in Lake Washington: A mechanistic approach to physiology in a eutrophication model

Original Research Article

Pages 101-121

Gurbir Perhar, George B. Arhonditsis, Michael T. Brett

Highlights

► A zooplankton growth submodel was integrated into a management oriented model. ► Calibration against observed data presented for zooplankton growth submodel. ► Increasing model complexity mitigated instability, challenging paradox of enrichment. ► Found post-gut regulation scheme to reduce sedimentation of non-limiting nutrient.

13**厂**

A Bayesian parameter estimation method applied to a marine ecosystem model for the coastal Gulf of Alaska

Original Research Article

Pages 122-133

J. Fiechter, R. Herbei, W. Leeds, J. Brown, R. Milliff, C. Wikle, A. Moore, T. Powell