ПИ 780/basm May 2014 Volume 196 Number 10 Published Twice Monthly ## **TABLE OF CONTENTS** | COMMENTARY | | | |--|--|-----------| | All in the Family: Kin Contact Leads to Outer Membrane Exchange | Trish Hartzell | 1789-1792 | | MINIREVIEW | | | | The Precarious Prokaryotic Chromosome | Andrei Kuzminov | 1793–1806 | | ARTICLES | | | | Myxobacteria Produce Outer Membrane-Enclosed Tubes in Unstructured Environments | Xueming Wei, Christopher N. Vassallo,
Darshankumar T. Pathak, Daniel Wall | 1807–1814 | | Localization of P42 and F_1 -ATPase α -Subunit Homolog of the Gliding Machinery in <i>Mycoplasma mobile</i> Revealed by Newly Developed Gene Manipulation and Fluorescent Protein Tagging | Isil Tulum, Masaru Yabe, Atsuko
Uenoyama, Makoto Miyata | 1815–1824 | | The K^C Channel in the cbb_3 -Type Respiratory Oxygen Reductase from <i>Rhodobacter capsulatus</i> Is Required for Both Chemical and Pumped Protons | Gülgez Gökçe Yıldız, Robert B. Gennis,
Fevzi Daldal, Mehmet Öztürk | 1825–1832 | | Mycobacterium tuberculosis Latin American-Mediterranean Family and Its Sublineages in the Light of Robust Evolutionary Markers | Igor Mokrousov, Anna Vyazovaya,
Olga Narvskaya | 1833–1841 | | Amylocyclicin, a Novel Circular Bacteriocin Produced by Bacillus amyloliquefaciens FZB42 | Romy Scholz, Joachim Vater, Anto
Budiharjo, Zhiyuan Wang, Yueqiu He,
Kristin Dietel, Torsten Schwecke,
Stefanie Herfort, Peter Lasch, Rainer
Borriss | 1842–1852 | | Iron-Regulated Protein HupB of <i>Mycobacterium tuberculosis</i> Positively Regulates Siderophore Biosynthesis and Is Essential for Growth in Macrophages | Satya Deo Pandey, Mitali Choudhury,
Suhail Yousuf, Paul R. Wheeler,
Stephen V. Gordon, Akash Ranjan,
Manjula Sritharan | 1853–1865 | | Identification of a Novel Aminopropyltransferase Involved in
the Synthesis of Branched-Chain Polyamines in
Hyperthermophiles | Kazuma Okada, Ryota Hidese, Wakao
Fukuda, Masaru Niitsu, Koichi Takao,
Yuhei Horai, Naoki Umezawa,
Tsunehiko Higuchi, Tairo Oshima,
Yuko Yoshikawa, Tadayuki Imanaka,
Shinsuke Fujiwara | 1866–1876 | | A Novel ESX-1 Locus Reveals that Surface-Associated ESX-1 Substrates Mediate Virulence in <i>Mycobacterium marinum</i> | George M. Kennedy, Gwendolyn C.
Hooley, Matthew M. Champion, Felix
Mba Medie, Patricia A. DiGiuseppe
Champion | 1877–1888 | | Functional Dissection of Intersubunit Interactions in the EspR Virulence Regulator of <i>Mycobacterium tuberculosis</i> | Benjamin Blasco, Aleksandre Japaridze,
Marco Stenta, Basile I. M. Wicky,
Giovanni Dietler, Matteo Dal Peraro,
Florence Pojer, Stewart T. Cole | 1889-1900 | | Biochemical Characterization of a Nitrogen-Type Phosphotransferase System Reveals that Enzyme EI ^{Ntr} Integrates Carbon and Nitrogen Signaling in Sinorhizobium | Reed A. Goodwin, Daniel J. Gage | 1901–1907 | meliloti Outer Membrane Protein OmpW Participates with Small Multidrug Resistance Protein Member EmrE in Quaternary Cationic Compound Efflux Maria S. Beketskaia, Denice C. Bay, Raymond J. Turner 1908-1914 Cover photograph (Copyright © 2014, American Society for Microbiology. All Rights Reserved.): Mycoplasma mobile glides on solid surfaces in the direction of the tapered end by a unique mechanism. Its cell architecture, including the gliding machinery, has been printed out by using a personal-use three-dimensional printer. Hundreds of units are aligned on the cell surface; each of them is composed of a leg (Gli349, colored red) and a crank (Gli521, colored green) protein. The inside structure, named the "jellyfish structure" (colored orange or blue), includes F_1 -ATPase α - and β -subunit homologs. The three-dimensional printer is supported by the Japanese government as an activity of a MEXT research project, "Motility Machinery." (See related article on page 1815.)