
FEBRUARY 13, 2014 VOLUME 118 NUMBER 6

pubs.acs.org/JPCB

THE JOURNAL OF PHYSICAL CHEMISTRY

B

Characterizing the Hydrophobicity of Complex Protein Surfaces Using a Highly Efficient Method (see page 5A)

BIOPHYSICAL CHEMISTRY, BIOMATERIALS, LIQUIDS, AND SOFT MATTER

FEBRUARY 13, 2014 VOLUME 118 ISSUE 6

JPCBFK 118(6) 1453-1706 (2014) ISSN 1520-6106

Registered in the U.S. Patent and Trademark Office © 2014 by the American Chemical Society

ON THE COVER: Characterizing the hydrophobicity of complex protein surfaces using a highly efficient, novel method. Accounting for the chemical and topographical complexities of a protein surface in the estimation of its hydrophobicity requires computation of cavity hydration free energies. Using the efficient method (bottom, right), such a context-dependent characterization of hydrophobicity of the protein, hydrophobin II, was carried out using benzene-shaped cavities and is shown here. The reflections of the central protein in the three mirrors placed behind it are also shown. See page 1564.

Review Article

1453 ZnO Nano Reactor on Textiles and Polymers: Ex Situ and In Situ Synthesis, Application, at Majid Montazer* and Morteza Maali Amiri	dx.doi.org/10.1021/jp408532r nd Characterization
Articles Biophysical Chemistry and Biomolecules	
1471	dx.doi.org/10.1021/jp408879g

1481 dx.doi.org/10.1021/jp4089113
Partitioning of Amino Acids into a Model Membrane: Capturing the Interface

Taras V. Pogorelov, Josh V. Vermaas, Mark J. Arcario, and Emad Tajkhorshid*

1493 dx.doi.org/10.1021/jp410727r
Large Equatorial Ligand Effects on C—H Bond Activation by Nonheme Iron(IV)-oxo Complexes
Xiaoli Sun, Caiyun Geng, Ruiping Huo, Ulf Ryde, Yuxiang Bu, and Jilai Li*

1501 **d**x.doi.org/10.1021/jp411023k

Nuclear Hyperfine and Quadrupole Tensor Characterization of the Nitrogen Hydrogen Bond Donors to the Semiquinone of the Q_B Site in Bacterial Reaction Centers: A Combined X- and S-Band ^{14,15}N ESEEM and DFT Study Alexander T. Taguchi, Patrick J. O'Malley,* Colin A. Wraight,* and Sergei A. Dikanov*

1510 dx.doi.org/10.1021/jp4112662 The Early Steps in the Photocycle of a Photosensor Protein Sensory Rhodopsin I from Salinibacter ruber Yuki Sudo,* Misao Mizuno, Zhengrong Wei, Satoshi Takeuchi, Tahei Tahara,* and Yasuhisa Mizutani* Biomaterials, Surfactants, and Membranes 1519 dx.doi.org/10.1021/jp406431m Surface Freezing and Molecular Miscibility of Binary Alkane-Alkane and Fluoroalkane-Alkane Liquid Mixtures

Takanori Takiue,* Mayuko Shimasaki, Miyako Tsuura, Hiroyasu Sakamoto, Hiroki Matsubara, and Makoto Aratono

1527 A dx.doi.org/10.1021/jp4106986 Effect of ZnO Nanoparticle and Hexadecyltrimethylammonium Bromide on the Dynamic and Equilibrium Oil-Water Interfacial Tension

Tahereh Fereidooni Moghadam and Saeid Azizian*

1535 dx.doi.org/10.1021/jp410899a

Easily Controlled Grafting of Oligonucleotides on yFe₂O₃ Nanoparticles: Physicochemical Characterization of DNA Organization and Biological Activity Studies

Frédéric Geinguenaud, Inès Souissi, Rémi Fagard, Yoann Lalatonne, and Laurence Motte*

1545 dx.doi.org/10.1021/jp412203t

Tracking Single Particles on Supported Lipid Membranes: Multimobility Diffusion and Nanoscopic Confinement Chia-Lung Hsieh, Susann Spindler, Jens Ehrig, and Vahid Sandoghdar*

Liquids: Chemical and Dynamical Processes in Solution

1555 dx.doi.org/10.1021/ip411782v

Chemical Bonding in Aqueous Ferrocyanide: Experimental and Theoretical X-ray Spectroscopic Study Nicholas Engel, Sergey I. Bokarev,* Edlira Suljoti, Raul Garcia-Diez, Kathrin M. Lange, Kaan Atak, Ronny Golnak, Alexander Kothe, Marcus Dantz, Oliver Kühn, and Emad F. Aziz*

1564 dx.doi.org/10.1021/jp4081977

Efficient Method To Characterize the Context-Dependent Hydrophobicity of Proteins Amish J. Patel* and Shekhar Garde*

dx.doi.org/10.1021/jp408603n

Temperature Dependence of Hydrophobic Hydration Dynamics: From Retardation to Acceleration

Elise Duboué-Dijon, Aoife C. Fogarty, and Damien Laage*

1584 dx.doi.org/10.1021/jp4086816

Interaction between SiO₂ and a KF-KCl-K₂SiF₆ Melt Yurii P. Zaykov, Andrey V. Isakov,* Irina D. Zakiryanova, Olga G. Reznitskikh, Oleg V. Chemezov, and Alexander A. Redkin 1589 dx.doi.org/10.1021/jp4125765

Polarizable Six-Point Water Models from Computational and Empirical Optimization Philipp Tröster, Konstantin Lorenzen, and Paul Tavan*

1603 dx.doi.org/10.1021/jp409545x

Automated Optimization of Water-Water Interaction Parameters for a Coarse-Grained Model Joseph C. Fogarty,* See-Wing Chiu, Peter Kirby, Eric Jakobsson, and Sagar A. Pandit*

1612 dx.doi.org/10.1021/jp411440k

Decomposition of L-Valine under Nonthermal Dielectric Barrier Discharge Plasma Yingying Li, Arben Kojtari, Gary Friedman, Ari D. Brooks, Alex Fridman, and Hai-Feng Ji*

1621 dx.doi.org/10.1021/jp4115755

The Role of the Cation in the Solvation of Cellulose by Imidazolium-Based Ionic Liquids Brooks D. Rabideau,* Animesh Agarwal, and Ahmed E. Ismail*

Ø 1630 dx.doi.org/10.1021/jp411629m

Probing Electronic Communication for Efficient Light-Harvesting Functionality: Dyads Containing a Common Perylene and a Porphyrin, Chlorin, or Bacteriochlorin

Eunkyung Yang, Jiegi Wang, James R. Diers, Dariusz M. Niedzwiedzki, Christine Kirmaier, David F. Bocian, * Jonathan S. Lindsey, * and Dewey Holten*

Glasses, Colloids, Polymers, and Soft Matter

dx.doi.org/10.1021/jp4092249

Coarse-Graining Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide) (PEO-PPO-PEO) Block Copolymers Using the MARTINI Force Field Selina Nawaz* and Paola Carbone*

dx.doi.org/10.1021/jp409297t 1660

A Coarse-Grained Model for Epoxy Molding Compound Shaorui Yang, Zhiwei Cui, and Jianmin Qu*

dx.doi.org/10.1021/jp410589h 1670

Photoresponsive Smectic Liquid Crystalline Multipods and Hyperbranched Azo Polymers Chinmay G. Nardele and S. K. Asha^a

dx.doi.org/10.1021/jp4113188 1685

Construction of Supramolecular Self-Assemblies Based on the Biamphiphilic Ionic Liquid- β -Cyclodextrin System Jianfeng Shi and Xinghai Shen*

Impact of Dendrimer Surface Functional Groups on the Release of Doxorubicin from Dendrimer Carriers Mengen Zhang, Rui Guo, Mónika Kéri, István Bányai,* Yun Zheng, Mian Cao, Xueyan Cao, and Xiangyang Shi*

Supporting Information available via online article