
SEPTEMBER 25, 2014 VOLUME 118 NUMBER 38

pubs.acs.org/JPCC

THE JOURNAL OF PHYSICAL CHEMISTRY

C

Optimized Microwave Synthesis of Bright Cadmium Chalcogenide Quantum Dots and Their Cellular Uptake (see page 22258)

ENERGY CONVERSION AND STORAGE, OPTICAL AND ELECTRONIC DEVICES, INTERFACES, NANOMATERIALS, AND HARD MATTER

THE JOURNAL OF PHYSICAL CHEMISTRY

SEPTEMBER 25, 2014 VOLUME 118 ISSUE 38

JPCCCK 118(38) 21741–22404 (2014)
ISSN 1932-7447
Registered in the U.S. Patent and Trademark Office
© 2014 by the American Chemical Society

dx.doi.org/10.1021/jp500665k

ON THE COVER: Optimized microwave synthesis of bright cadmium chalcogenide quantum dots and their cellular uptake. Fiber optic coupling of a microwave reactor with a fluorimeter allows for real-time observation of the evolution of the fluorescence of CdSe/CdS/ZnS quantum dots. With this data, it is possible to distinguish the development of the CdSe nuclei, followed by deposition of successive CdS and ZnS shells (note isosbestic point in the fluorescence data). Nucleation at 100 °C followed by microwave treatment at 155 °C led to quantum-dot formation in 55 min. Further improvement in the quantum yield of the quantum dots was possible by light irradiation during nucleation and post-microwave synthesis. Optimized quantum dots of ~5 nm size had quantum yields of 40 to 41%. With these bright quantum dots, their uptake into intestinal epithelial cells at concentrations of 16 nM could be tracked by confocal fluorescence microscopy, as seen in the background of the cover. (The blue color is from labeling of nuclei of cells by 4'6'-diamidino-2-phenylindole or DAPI, and the red color is antibody staining of E-cadherin to label cell junctions.)
Mean fluorescence intensity detected by flow cytometry was markedly improved with the bright quantum dots, as seen in the bar charts. (Old quantum dots have quantum yield of 19% with a previously published microwave-based procedure.) See page 22258.

Articles

21741

Energy Conversion and Storage; Energy and Charge Transport

3894 3 CO COLORA DE 105 NOCE

Rational Design of Carbazole- and Carboline-Based Ambipolar Host Materials for Blue Electrophosphorescence: A Density Functional Theory Study

E. Varathan, Dolly Vijay, and V. Subramanian*

21755 dx.doi.org/10.1021/jp503797s

Experimental and Theoretical Analysis of Fast Lithium Ionic Conduction in a LiBH₄–C₆₀ Nanocomposite
Joseph A. Teprovich Jr., Héctor R. Colón-Mercado, Patrick A. Ward, Brent Peters, Santanab Giri, Jian Zhou, Scott Greenway,
Robert N. Compton, Purusottan Jena, and Ragaiy Zidan*

21762 **d**x.doi.org/10.1021/jp503935k

Electron Transport Materials for Organic Light-Emitting Diodes: Understanding the Crystal and Molecular Stability of the Tris(8-hydroxyquinolines) of Al, Ga, and In

José C. S. Costa,* Carlos F. R. A. C. Lima, and Luís M. N. B. F. Santos*

21770 dx.doi.org/10.1021/jp504458z

Impact of Graphene Edges on Enhancing the Performance of Electrochemical Double Layer Capacitors Alexander J. Pak, Eunsu Paek, and Gyeong S. Hwang*

21778 dx.doi.org/10.1021/jp504766b

Hydrogen Storage Properties of Magnesium Hydride with V-Based Additives Chai Ren, Z. Zak Fang,* Chengshang Zhou, Jun Lu, Yang Ren, and Xiaoyi Zhang

dx.doi.org/10.1021/jp504923x

Polaron Structure and Transport in Fullerene Materials: Insights from First-Principles Calculations Kenley M. Pelzer, Maria K. Y. Chan, Stephen K. Gray, and Seth B. Darling*

21798

6

dx.doi.org/10.1021/jp5051172

Hot Injection Processes in Optically Excited States: Molecular Design for Optimized Photocapture Gil Katz,* Mark A. Ratner,* and Ronnie Kosloff*

21806

dx.doi.org/10.1021/jp5052529

Experimental Investigation of Potential Oscillations during the Electrocatalytic Oxidation of Urea on Ni Catalyst in Alkaline Medium

Vedasri Vedharathinam and Gerardine G. Botte*

21813

dx.doi.org/10.1021/jp5056792

First-Principles Study of an Ethoxycarbonyl-Based Organic Electrode Material of Lithium Battery Yanhui Chen, Zeyuan Wu, and Shaorui Sun*

21819

dx.doi.org/10.1021/jp506463m

Aqueous Solution Processed, Ultrathin ZnO Film with Low Conversion Temperature as the Electron Transport Layer in the Inverted Polymer Solar Cells

Yawen Chen, Zhanhao Hu, Zhiming Zhong, Wen Shi, Junbiao Peng, Jian Wang,* and Yong Cao

21826

dx.doi.org/10.1021/jp506731v

Understanding the Effect of Co³⁺ Substitution on the Electrochemical Properties of Lithium-Rich Layered Oxide Cathodes for Lithium-Ion Batteries

Xingde Xiang, James C. Knight, Weishan Li, and Arumugam Manthiram*

21834

dx.doi.org/10.1021/jp506855t

Symmetry-Breaking Charge Transfer of Visible Light Absorbing Systems: Zinc Dipyrrins
Cong Trinh, Kent Kirlikovali, Saptaparna Das, Maraia E. Ener, Harry B. Gray, Peter Djurovich, Stephen E. Bradforth, and Mark E. Thompson*

21846

dx.doi.org/10.1021/jp506903m

Ionic Liquid Dynamics in Nanoporous Carbon Nanofibers in Supercapacitors Measured with in Operando Infrared Spectroelectrochemistry

Francis W. Richey, Chau Tran, Vibha Kaira, and Yossef A. Elabd*

21856

dx.doi.org/10.1021/jp5070006

Graphene-Based Planar Nanofluidic Rectifiers

Morteza Miansari, James R. Friend, Parama Banerjee, Mainak Majumder, and Leslie Y. Yeo*

dx.doi.org/10.1021/jp507030g

H₂O-Functionalized Zeolitic Zn(2-methylimidazole)₂ Framework (ZIF-8) for H₂ Storage Peifu Cheng and Yun Hang Hu*

21873

dx.doi.org/10.1021/jp507097h

Electronic Structure and Transition Energies in Polymer-Fullerene Bulk Heterojunctions Robert A. Street,* Steven A. Hawks, Petr P. Khlyabich, Gang Li, Benjamin J. Schwartz, Barry C. Thompson, and Yang Yang

21884

dx.doi.org/10.1021/jp507337c

Germanium and Tin Selenide Nanocrystals for High-Capacity Lithium Ion Batteries: Comparative Phase Conversion of Germanium and Tin

Hyung Soon Im, Young Rok Lim, Yong Jae Cho, Jeunghee Park,* Eun Hee Cha, and Hong Seok Kang

21889

dx.doi.org/10.1021/ip507624b

Phase Stabilities in the Mg-Si-H System Tuned by Mechanochemistry Junxian Zhang, Zhinian Li, Fermin Cuevas,* and Michel Latroche

Surfaces, Interfaces, Porous Materials, and Catalysis

21896

dx.doi.org/10.1021/jp5005924

Preparation, Structure, and Orientation of Pyrite FeS-{100} Surfaces: Anisotropy, Sulfur Monomers, Dimer Vacancies, and a Possible FeS Surface Phase

Klas J. Andersson, Hirohito Ogasawara, Dennis Nordlund, Gordon E. Brown Jr., and Anders Nilsson*

21904

dx.doi.org/10.1021/jp5016774

Revisiting the Nonreactive Scattering of N₂ off W(100): On the Influence of the Scattering Azimuth on In-Plane Angular Distributions

R. Pétuya, P.-A. Plötz, C. Crespos, and P. Larregaray*

21911

dx.doi.org/10.1021/jp501701f

Theoretical Comparative Study of Oxygen Adsorption on Neutral and Anionic Ag, and Au, Clusters (n = 2-25) Meng-Sheng Liao, John D. Watts, and Ming-Ju Huang*

21928

dx.doi.org/10.1021/jp505506e

Highly Efficient Deposition Method of Platinum over CdS for H2 Evolution under Visible Light Gang Xin,* Bei Yu, Yuanjiao Xia, Tian Hu, Luman Liu, and Caifu Li*

21935

dx.doi.org/10.1021/jp503614f

First-Principles Study of Water Reaction and H2 Formation on UO2 (111) and (110) Single Crystal Surfaces Tao Bo, Jian-Hui Lan, Cong-Zhi Wang, Yao-Lin Zhao, Chao-Hui He, Yu-Juan Zhang, Zhi-Fang Chai,* and Wei-Qun Shi*

3	1	0	A	_	

dx.doi.org/10.1021/jp503769d

Theoretical and Experimental Investigations on Single-Atom Catalysis: Ir₁/FeO_x for CO Oxidation Jin-Xia Liang, Jian Lin, Xiao-Feng Yang, Ai-Qin Wang, Bo-Tao Qiao, Jingyue Liu, Tao Zhang,* and Jun Li*

21952

dx.doi.org/10.1021/jp504432a

Reaction Mechanisms for the Formation of Mono- And Dipropylene Glycol from the Propylene Oxide Hydrolysis over ZSM-5 Zeolite

Yevhen Horbatenko, Juan Pedro Pérez, Pedro Hernández, Marcel Swart,* and Miguel Solà*

21963

dx.doi.org/10.1021/jp504791z

Adsorption Structures and Energies of Cun Clusters on the Fe(110) and Fe₃C(001) Surfaces Xinxin Tian, Tao Wang, Yong Yang, Yong-Wang Li, Jianguo Wang, and Haijun Jiao*

21975

dx.doi.org/10.1021/jp504936k

Co₃O₄@Mesoporous Silica for Fischer-Tropsch Synthesis: Core-Shell Catalysts with Multiple Core Assembly and Different Pore Diameters of Shell

Prashant R. Karandikar, Yun-Jo Lee, Geunjae Kwak, Min Hee Woo, Seon-Ju Park, Hae-Gu Park, Kyoung-Su Ha, and Ki-Won Jun*

21986

dx.doi.org/10.1021/jp505021a

Spectral Features of Photostimulated Oxygen Isotope Exchange and NO Adsorption on "Self-Sensitized" TiO2 , TiO2 in UV-Vis Region

Victor V. Titov, Ruslan V. Mikhaylov, and Andrey A. Lisachenko*

21995

dx.doi.org/10.1021/jp5053584

Investigating the Kinetic Mechanisms of the Oxygen Reduction Reaction in a Nonaqueous Solvent Nelson A. Galiote, Dayse C. de Azevedo, Osvaldo N. Oliveira Jr., and Fritz Huguenin*

22003

dx.doi.org/10.1021/jp505660p

Angle-Resolved Thermal Dissociative Sticking of Light Alkanes on Pt(111): Transitioning from Dynamical to Statistical **Behavior**

Jason K. Navin, Scott B. Donald, and Ian Harrison*

22012

dx.doi.org/10.1021/jp505853k

Molecular Dynamics Simulations of Acidic Gases at Interface of Quaternary Ammonium Ionic Liquids Juliana D. Morganti, Karina Hoher, Mauro C. C. Ribeiro, Romulo A. Ando, and Leonardo J. A. Siqueira*

22021

dx.doi.org/10.1021/jp505893s

New Insights into the Hydrogen Bond Network in Al-MIL-53 and Ga-MIL-53 Guillaume Ortiz, Gérald Chaplais,* Jean-Louis Paillaud, Habiba Nouali, Joël Patarin, Jesus Raya, and Claire Marichal*

22040	dx.doi.org/10.1021/jp506046m				
First Principles Calculation Study on Surfaces and Water Interfaces of Boron-Doped Diam Zdenek Futera,* Takeshi Watanabe, Yasuaki Einaga, and Yoshitaka Tateyama*	ond				
22053	dx.doi.org/10.1021/jp506056r				
Integrated Stefan—Maxwell, Mean Field, and Single-Event Microkinetic Methodology for Steaction inside Microporous Materials	Simultaneous Diffusion and				
B. D. Vandegehuchte, I. R. Choudhury, J. W. Thybaut,* J. A. Martens, and G. B. Marin					
22069	dx.doi.org/10.1021/jp506135m				
Contrasting Effects of Nanoparticle Binding on Protein Denaturation Pengyu Chen, Shane A. Seabrook, V. Chandana Epa, Katsuo Kurabayashi, Amanda S. Barnard, David A. Winkler,* Jason K. Kirby,* and Pu Chun Ke*					
22079	dx.doi.org/10.1021/jp506534b				
Disjoining Pressure, Healing Distance, and Film Height Dependent Surface Tension of Th Jorge Benet, Jose G. Palanco, Eduardo Sanz, and Luis G. MacDowell*	in Wetting Films				
22090 6	dx.doi.org/10.1021/jp506664c				
Computational Study of p-Xylene Synthesis from Ethylene and 2,5-Dimethylfuran Catalyz	red by H-BEA				

Potassium-Exchanged Natrolite Under Pressure. Computational Study vs Experiment

Alena Kremleva, Thomas Vogt, and Notker Rösch*

22030

22096

Monolayer Selective Methylation of Epitaxial Graphene on SiC(0001) through Two-Step Chlorination—Alkylation Reactions Md. Zakir Hossain,* Maisarah B. A. Razak, Hiroyuki Noritake, Yuichiro Shiozawa, Shinya Yoshimoto, Kozo Mukai, Takanori Koitaya, Jun Yoshinobu, and Sumio Hosaka

dx.doi.org/10.1021/jp5068186

dx.doi.org/10.1021/jp505973r

Mikhail Yu. Smirnov,* Alexander V. Kalinkin, Andrei V. Pashis, Igor P. Prosvirin, and Valerii I. Bukhtiyarov 22136 dx.doi.org/10.1021/jp506979p Structural Dynamics of the Electrical Double Layer during Capacitive Charging/Discharging Processes Masashi Nakamura,* Hiroto Kaminaga, Osamu Endo, Hiroo Tajiri, Osami Sakata, and Nagahiro Hoshi 22141 dx.doi.org/10.1021/ip5070374 Nature of Reduced States in Titanium Dioxide as Monitored by Electron Paramagnetic Resonance, II: Rutile and Brookite Cases Stefano Livraghi, Manuela Rolando, Sara Maurelli, Mario Chiesa, Maria Cristina Paganini, and Elio Giamello* 22149 dx.doi.org/10.1021/jp507069x The Role of Proton Transfer in Surface-Induced Dissociation Zackary Gregg, Waleed Ijaz, Stephen Jannetti, and George L. Barnes* 22156 dx.doi.org/10.1021/jp5071874 Polymer-Assisted Chain-like Organization of CuNi Alloy Nanoparticles: Solvent-Adoptable Pseudohomogeneous Catalysts for Alkyne-Azide Click Reactions with Magnetic Recyclability Mrinmoy Biswas, Anupam Saha, Madhab Dule, and Tarun K. Mandal* 22166 dx.doi.org/10.1021/jp507212b On Asymmetric Surface Barriers in MFI Zeolites Revealed by Frequency Response Andrew R. Teixeira, Xiaoduo Qi, Chun-Chih Chang, Wei Fan, Wm. Curtis Conner, and Paul J. Dauenhauer* 22181 dx.doi.org/10.1021/jp507330j Study of the Electronic and Optical Properties of Hybrid Triangular (BN), C, Foams Xinrui Cao and Yi Luo* 22188 dx.doi.org/10.1021/jp5074472 C-Cl Bond Activation on Au/Pd Bimetallic Nanocatalysts Studied by Density Functional Theory and Genetic Algorithm Calculations Bundet Boekfa, Elke Pahl, Nicola Gaston, Hidehiro Sakurai, Jumras Limtrakul, and Masahiro Ehara*

22120

22197

James R. T. Seddon*

Interaction of SO2 with Pt Model Supported Catalysts Studied by XPS

Conservative and Dissipative Interactions of Ionic Liquids in Nanoconfinement

dx.doi.org/10.1021/jp508336e

dx.doi.org/10.1021/jp5069126

Plasmonics, Optical Materials, and Hard Matter

22202

dx.doi.org/10.1021/jp409622r

Core and Valence Structures in KB X-ray Emission Spectra of Chromium Materials María Torres Deluigi,* Frank M. F. de Groot, Gastón López-Diaz, Germán Tirao, Guillermo Stutz, and José Riveros de la Vega

22211

dx.doi.org/10.1021/jp501249k

Free Energy Calculations for Identifying Efficient Promoter Molecules of Binary sH Hydrogen Clathrates Alexander A. Atamas, Marina V. Koudriachova, Simon W. de Leeuw, and Herma M. Cuppen*

22221

dx.doi.org/10.1021/jp5057607

Simulation of Diffusion in FCC NiFe Binary Alloys Using Kinetic Monte Carlo Method Dominic R. Alfonso* and De Nyago Tafen

22229

dx.doi.org/10.1021/jp507168a

Local Optical Activity in Achiral Two-Dimensional Gold Nanostructures Shun Hashiyada, Tetsuya Narushima, and Hiromi Okamoto*

22234

dx.doi.org/10.1021/jp5073395

Wavelength-Dependent Correlations between Ultraviolet-Visible Intensities and Surface Enhanced Raman Spectroscopic Enhancement Factors of Aggregated Gold and Silver Nanoparticles Fathima S. Ameer, Yadong Zhou, Shengli Zou, and Dongmao Zhang*

Physical Processes in Nanomaterials and Nanostructures

22243

dx.doi.org/10.1021/jp504367m

Enhancement of Vertically Aligned Carbon Nanotube Growth Kinetics and Doubling of the Height by Graphene Interface Rahul Rao, Neal Pierce, and Avetik R. Harutyunyan*

22249

dx.doi.org/10.1021/jp5044943

Adsorption of Bovine Serum Albumin and Lysozyme on Functionalized Carbon Nanotubes Peng Du, Jian Zhao, Hamid Mashayekhi, and Baoshan Xing*

22258

dx.doi.org/10.1021/jp504755a

Spectroscopic Evaluation of the Nucleation and Growth for Microwave-Assisted CdSe/CdS/ZnS Quantum Dot Synthesis Andrew Zane, Christie McCracken, Deborah A. Knight, W. James Waldman, and Prabir K. Dutta*

22268

dx.doi.org/10.1021/jp504773h

The Preparation of BN-Doped Atomic Layer Graphene via Plasma Treatment and Thermal Annealing Jiao Xu, Sung Kyu Jang, Jieun Lee, Young Jae Song, and Sungjoo Lee*

dx.doi.org/10.1021/jp505301h

Influence of the Global Charge of the Protein on the Stability of Lysozyme—AuNP Bioconjugates
Betzhy Cárdenas, Guadalupe Sánchez-Obrero, Rafael Madueño, José M. Sevilla, Manuel Blázquez, and Teresa Pineda*

22284

dx.doi.org/10.1021/jp505530k

Coulomb Shifts upon Exciton Addition to Photoexcited PbS Colloidal Quantum Dots
Pieter Geiregat, Arjan Houtepen, Yolanda Justo, Ferdinand C. Grozema, Dries Van Thourhout, and Zeger Hens*

22291

•

dx.doi.org/10.1021/jp5057804

Aberration Corrected STEM Study of the Surface of Lead Chalcogenide Nanoparticles
Domingo I. Garcia-Gutierrez,* Diana F. Garcia-Gutierrez, Lina M. De Leon-Covian, Mario T. Treviño-Gonzalez,
Marco A. Garza-Navarro, Ivan E. Moreno-Cortez, and Rene F. Cienfuegos-Pelaes

22299

dx.doi.org/10.1021/jp505819j

Template Electrochemical Growth and Properties of Mo Oxide Nanostructures

Letteria Silipigni, Francesco Barreca, Enza Fazio, Fortunato Neri, Tiziana Spanò, Salvatore Piazza, Carmelo Sunseri, and Rosalinda Inquanta*

22309

dx.doi.org/10.1021/jp505887u

Tuning Energy Splitting and Recombination Dynamics of Dark and Bright Excitons in CdSe/CdS Dot-in-Rod Colloidal Nanostructures

Louis Biadala,* Benjamin Siebers, Raquel Gomes, Zeger Hens, Dmitri R. Yakovlev, and Manfred Bayer

22317

0

dx.doi.org/10.1021/jp506281d

Watching Iron Nanoparticles Rust: An in Situ X-ray Absorption Spectroscopic Study Yali Yao, Yongfeng Hu.* and Robert W. J. Scott*

22325

3

dx.doi.org/10.1021/ip506574x

Spectroscopic and Morphology Studies of Biodegradable Nanolamellar Lactone Based Triblocks Nibedita Kasyapi and Anil K. Bhowmick*

22339

3

dx.doi.org/10.1021/jp506745p

Fluorescent Gold Nanocluster Inside a Live Breast Cell: Etching and Higher Uptake in Cancer Cell Shyamtanu Chattoraj and Kankan Bhattachanyya*

22347

dx.doi.org/10.1021/jp506833s

Electrodeposition of CuZn from Chlorozincate Ionic Liquid: From Hollow Tubes to Segmented Nanowires Yi-Ting Hsieh, Ren-Wei Tsai, Chung-Jui Su, and I-Wen Sun*

dx.doi.org/10.1021/jp5069544

Diffusion and Solvation of Radical lons in an Ionic Liquid Studied by the MFE Probe Tomoaki Yago, Yuya Ishii, and Masanobu Wakasa*

22368

dx.doi.org/10.1021/jp506996a

Electronic Properties of Edge-Hydrogenated Phosphorene Nanoribbons; A First-Principles Study Weifeng Li, Gang Zhang,* and Yong-Wei Zhang*

22373

dx.doi.org/10.1021/jp507400n

Electron-Water Interactions and Implications for Liquid Cell Electron Microscopy Nicholas M. Schneider, Michael M. Norton, Brian J. Mendel, Joseph M. Grogan, Frances M. Ross,* and Haim H. Bau*

22383

dx.doi.org/10.1021/ip507794z

Atomic Structure Characterization of Au-Pd Bimetallic Nanoparticles by Aberration-Corrected Scanning Transmission Electron Microscopy

R. Esparza,* O. Téllez-Vázquez, G. Rodríquez-Ortiz, A. Ángeles-Pascual, S. Velumani, and R. Pérez

22389

dx.doi.org/10.1021/jp508085a

Interplay between Point Defects and Thermal Conductivity of Chemically Synthesized Bi₂Te₂, Nanocrystals Studied by Positron Annihilation

H. F. He, X. F. Li, Z. Q. Chen,* Y. Zheng, D. W. Yang, and X. F. Tang*

22395

dx.doi.org/10.1021/ip5084955

Impact of Collective Electrostatic Effects on Charge Transport through Molecular Monolayers Veronika Obersteiner, David A. Egger,* Georg Heimel, and Egbert Zojer*

Additions and Corrections

22402

dx.doi.org/10.1021/jp508716h

Correction to "Controlling Oxidation Potentials in Redox Shuttle Candidates for Lithium-Ion Batteries" Selin Ergun, Corrine F. Elliott, Aman Preet Kaur, Sean R. Parkin, and Susan A. Odom*

22403

dx.doi.org/10.1021/jp508821m

Correction to "Do Surface Wetting Properties Affect Calcium Carbonate Heterogeneous Nucleation and Adhesion?" Nicolas R. Chevalier*

Supporting Information available via online article