


SOLID STATE IONICS

DIFFUSION & REACTIONS

Principal Editor
Joachim Maier, Stuttgart, Germany

Regional Editor Europe John Kilner, London, UK

Regional Editor Asia Koichi Eguchi, Kyoto, Japan

Regional Editor USA
Arumugam Manthiram, Austin, TX, USA

Editors

Klaus Funke, Münster, Germany Truls Norby, Oslo, Norway Josh Thomas, Uppsala, Sweden

Founding Editor
M. Stanley Whittingham, Binghamton, NY, USA

Editorial Assistant
Rotraut Merkle, Stuttgart, Germany

Solid State Ionics

Volume 233, Pages 1-112 (21 February 2013)

Editorial Board

Page IFC

High rate performance of the composites of Li₄Ti₅O₁₂-Ketjen Black and Li₄Ti₅O₁₂-Ketjen Black-multi-walled carbon nanotubes for Li-ion batteries

Original Research Article

Pages 1-6

Shuli Chen, Hongbin Wu, Huachong Hu, Yinghua Mo, Jinling Yin, Guiling Wang,
Dianxue Cao, Yiming Zhang, Baofeng Yang, Peiliang She

Highlights

▶ High rate performance of $\text{Li}_4\text{Ti}_5\text{O}_{12}$ –KB and $\text{Li}_4\text{Ti}_5\text{O}_{12}$ –KB–MWCNTs are prepared. ▶ KB prohibits the growth of $\text{Li}_4\text{Ti}_5\text{O}_{12}$ particles. ▶ MWCNTs combine with KB to form a three-dimensional conductive network. ▶ The asymmetric behavior between charge and discharge of $\text{Li}_4\text{Ti}_5\text{O}_{12}$ exists.

Heterovalent substitutions in Na₂M₂TeO₆ family: Crystal structure, fast sodium ion conduction and phase transition of Na₂LiFeTeO₆

Original Research Article

Pages 7-11

V.B. Nalbandyan, A.A. Petrenko, M.A. Evstigneeva

Highlights

Na₂LiFeTeO₆ is a new orthorhombic superlattice of the known hexagonal layered P2 type. ► The distortion seems to be only due to Na⁺ ion ordering in the interlayer prisms. ► On heating, high Na⁺ ion conductivity is observed, e.g., 4 S/m at 300 °C. ► With Na⁺ ion movement, distortion decreases and vanishes at ca. 400 °C. ► 10 other variants of M and/or Te substitutions in Na₂M₂TeO₆ family were unsuccessful.

High capacity spherical Li[Li_{0.24}Mn_{0.55}Co_{0.14}Ni_{0.07}]O₂ cathode material for

lithium ion batteries

Original Research Article

Pages 12-19

Ying Wang, Neeraj Sharma, Dawei Su, David Bishop, Hyojun Ahn, Guoxiu Wang

Highlights

► Li[Li_{0.24}Mn_{0.55}Co_{0.14}Ni_{0.07}]O₂ was prepared by a modified co-precipitation method. ► The refined composition of final product is consistent with the nominal formula. ► This material exhibits high discharge capacity and satisfactory rate capability.

Effect of anode configuration on electrical properties and cell polarization in planar anode supported SOFC

Original Research Article
Pages 20-31
Madhumita Mukhopadhyay, Jayanta Mukhopadhyay, Abhijit Das Sharma, Rajendra N.
Basu

Highlights

▶ Anodes are engineered using a novel electroless cermet having variable thickness. ▶ Correlation among electrical conductivity and configurational variations of anode. ▶ 15 μm electroless AAL augments the cell performance to 3.7 Acm⁻² at 800 °C and 0.7 V. ▶ Least cell polarization (~ 0.3 Ω .cm²) is found with 15 μm electroless AAL. ▶ Electroless AAL substantially lowers charge transfer & concentration polarizations.

Electrode properties and microstructures of MnO₂ nanosheet thin films as cathodes for electrochemical capacitors

Original Research Article

Pages 32-37

Masato Yano, Shinya Suzuki, Masaru Miyayama, Masataka Ohgaki

Highlights

► Thin films of MnO₂ nanosheets (NS) were prepared by electrophoretic deposition. ► Small-NS films had a heterogeneous microstructure with numerous pores. ► Small-NS films exhibited better electrochemical properties than large-NS films. ► The better electrochemical properties resulted from the fast ion diffusion. ► Heterogeneous microstructure was found to contribute to the good electrode properties.

Grain boundary induced compositional stress in nanocrystalline ceria films

Original Research Article

Pages 38-46

Brian W. Sheldon, Sunil Mandowara, Janet Rankin

Highlights

► Large stresses are induced by oxidation/reduction in nanocrystalline ceria films. ► In situ experiments are consistent with space charge effects near grain boundaries. ► Measured grain boundary contributions are only a weak function of temperature.

The interface effect on the I–V curves and analysis of ionic diffusion coefficients of polycrystalline CuIn₄Te₆

Original Research Article *Pages 47-54*A. Arranz, R. Díaz

Highlights

▶ It has been found that a CuIn₄Te₆ polycrystal is a MIEC. ▶ The potential decay method is used to measure the electrical properties. ▶ Hysteresis effects have been observed in the I–V relations. ▶ An equivalent electrical circuit has been used to explain the results. ▶ The role of an interface residual voltage due to previous measurements is discussed.

Sulfonated poly(arylene ether sulfone)/sulfonated zeolite composite membrane for high temperature proton exchange membrane fuel cells

Original Research Article

Pages 55-61

Duk Man Yu, Young Jun Yoon, Tae-Ho Kim, Jang Yong Lee, Young Taik Hong

Highlights

► The tensile strength of the composite membrane increased from 16.52 MPa to 18.72 MPa. ► The dimensional change was reduced by approximately 40% in the composite membrane. ► Proton conductivity of the composite membrane was 1.36 times higher at 120 °C/50% RH. ► 5 wt.% sulfonated zeolite composite membrane showed a 54% increase in performance.

Energetics of lanthanum silicate apatite: Influence of interstitial oxygen and cation vacancy concentrations in $La_{9.33+x}(SiO_4)_6O_{2+3x/2}$ and

 $La_{10-x}Sr_x(SiO_4)_6O_{3-0.5x}$

Original Research Article Pages 62-66

S. Mahboobeh Hosseini, Tatiana Shvareva, Alexandra Navrotsky

Highlights

► Energetics of La_{9.33+x}(SiO₄)₆O_{2+3x/2} and La_{10-x}Sr_x(SiO₄)₆O_{3-0.5x} are investigated. ► Stoichiometric sample La₈Sr₂(SiO₄)₆O₂ is the most stable composition. ► ΔH°_f, interstitial and ΔH_f, cation vacancy were determined. ► Cation vacancy concentrations appear to be the dominant factor in energetics. ► Energetics in LSSO series directly correlates with conductivity.

Electrical conductivity of $La_{0.58}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ during ferroelastic deformation under uniaxial compressive loading

Original Research Article *Pages 67-72*Wakako Araki, Jürgen Malzbender

Highlights

► Conductivity measurement of LSCF under uniaxial compression at various temperatures ► The enhancement in conductivity by uniaxial compressive stress is demonstrated. ► The enhancement is attributed to piezoelectric and also geometrical effects. ► The piezoelectricity of LSCF as a function of temperature up to 1073 K is obtained. ► The significant ferroelastic deformation contributes to the geometrical effect.

An interpretation for the increase of ionic conductivity by nitrogen incorporation in LiPON oxynitride glasses

Original Research Article

Pages 73-79

Nerea Mascaraque, José Luis G. Fierro, Alicia Durán, Francisco Muñoz

Highlights

► LiPON glasses with variable Li and N contents were prepared by ammonolysis. ► The lower the Li content the higher the increase of conductivity after nitridation. ► Nitrogen introduction produces a decrease of the BO/NBO ratio. ► The increase of the ionic conductivity by N depends on the variation of BO/NBO ratio.

Defect chemical modeling of Pd/ZnO Schottky junctions

Original Research Article Pages 80-86 Shimon Saraf, Avner Rothschild

Highlights

▶ We present a methodology for modeling semiconducting oxide Schottky junctions.
 ▶ Our methodology accounts for the defect structure of the semiconducting oxide layer.
 ▶ The method is applied to the Pd/ZnO Schottky junction.
 ▶ The ionic defects have important role in shaping the junction characteristics.
 ▶ Growth conditions are expected to provide handles for tailoring junction properties.

A fundamental study of infiltrated CeO₂ and (Gd,Ce)O₂ nanoparticles on the electrocatalytic activity of Pt cathodes of solid oxide fuel cells

Original Research Article
Pages 87-94
Na Ai, Kongfa Chen, San Ping Jiang

Highlights

➤ Catalytic effect of infiltrated ceria and GDC NPs on Pt electrodes is investigated. ➤ At low currents, ceria and GDC NPs show similar promotion effect for the ORR. ➤ At high currents, GDC nanoparticles show higher catalytic promotion effect. ➤ The higher promotion effect of GDC NPs is related to its high catalytic properties.

A new crystalline LiPON electrolyte: Synthesis, properties, and electronic structure

Original Research Article

Pages 95-101

Keerthi Senevirathne, Cynthia S. Day, Michael D. Gross, Abdessadek Lachgar,
N.A.W. Holzwarth

Highlights

► High temperature solid state methods were used to synthesize the new crystalline compound Li₂PO₂N. ► X-ray analysis shows the synthesized compound to have a structure similar to first-principles predictions. ► The structure is characterized by parallel chains of corner sharing

 PO_2N_2 tetrahedra with planar P N P N backbones. \blacktriangleright Li₂PO₂N is chemically and structurally stable in air up to 600 °C and in vacuum up to 1050 °C. \blacktriangleright The measured Arrhenius activation energy for ionic conductivity of Li₂PO₂N in pressed pellet form is 0.6 eV.

Low temperature cubic garnet-type CO₂-doped Li₇La₃Zr₂O₁₂

Original Research Article

Pages 102-106

S. Toda, K. Ishiguro, Y. Shimonishi, A. Hirano, Y. Takeda, O. Yamamoto, N. Imanishi

Highlights

► Low temperature cubic phase of Li₇La₃Zr₂O₁₂ (LLZ) was obtained by annealing tetragonal LLZ. ► The low temperature cubic LLZ was transferred to the tetragonal phase at annealing at 800 °C for 1 h. ► The low temperature cubic LLZ contained about 2.5 wt.% CO₂.

Reply on the "critical comments on speculations with ... free-volume defects ... in ion-conducting Ag/AgI-As₂S₃ glasses..."

Pages 107-109

T. Kavetskyy, J. Borc, P. Petkov, K. Kolev, T. Petkova, V. Tsmots

Highlights

► Size of voids with radius $R \sim 2$ Å at $\tau_2 = 0.35$ –0.36 ns for g-Ag/AgI–As₂S₃ is concluded. ► This conclusion is a direct evidence of a new formula for τ_2 vs R for R < 5 Å. ► Size of voids ~ 80 –100 Å³ to be positron traps with $\tau_2 = 0.35$ –0.38 ns is inconclusive. ► A bias by not fixing τ_1 is small and not affecting systematic trends in PALS data.

Corrigendum

Corrigendum to "Mechanical relaxation in $(AgI)_{1-x}(Ag_2MoO_4)_x$ ionic glasses" [Solid State Ionics 113–115 (1998) 677–679]

Page 110

M. Cutroni, M. Federico, A. Mandanici, P. Mustarelli, C. Tomasi

Calendar

Page 111