

SOLID STATE IONICS

DIFFUSION & REACTIONS

Principal Editor
Joachim Maier, Stuttgart, Germany

Regional Editor Europe John Kilner, London, UK

Regional Editor Asia Koichi Eguchi, Kyoto, Japan

Regional Editor USA
Arumugam Manthiram, Austin, TX, USA

Editors

Klaus Funke, Münster, Germany Truls Norby, Oslo, Norway Josh Thomas, Uppsala, Sweden

Founding Editor
M. Stanley Whittingham, Binghamton, NY, USA

Editorial Assistant
Rotraut Merkle, Stuttgart, Germany

Solid State Ionics

Volume 236, Pages 1-54 (1 April 2013)

Editorial Board

Page IFC

Preparation of Li_2S -GeS₂ solid electrolyte thin films using pulsed laser deposition

Original Research Article

Pages 1-4

Yusuke Ito, Atsushi Sakuda, Takamasa Ohtomo, Akitoshi Hayashi, Masahiro Tatsumisago

Highlights

▶ Li₂S–GeS₂ solid electrolyte (SE) thin films were synthesized by PLD. ▶ Amorphous Li₂S–GeS₂ thin films showed high ionic conductivity of 10^{-4} S cm⁻¹. ▶ LiCoO₂ particles coated with SE thin films were prepared by PLD. ▶ All-solid-state cells with SE-coated LiCoO₂ particles operated at 25 °C.

Decoupling the effects of pressure and current in spark plasma sintering: Synthesis of $CU_{0.9}V_2O_5$

Original Research Article

Pages 5-10

Gauthier Jouan, Mickaël Dollé, Jean-Philippe Monchoux

Highlights

▶ Synthesis of $Cu_{0.9}V_2O_5$ by SPS is found to be much faster than by sealed quartz tubes. ▶ Role of current (I) and pressure (P) is studied by decoupling these parameters. ▶ No influence of I and P on synthesis kinetics is detected. ▶ Synthesis kinetics is dependent on contact between reacting powder particles.

Improvement of the sealing performance of sodium anode battery by an in-situ gradient modification method

Original Research Article

Pages 11-15

Gaoxiao Zhang, Zhaoyin Wen, Xiangwei Wu, Jingchao Zhang

Highlights

▶ Na- beta"-Al₂O₃ film was prepared on alpha-Al₂O₃ surface by a gas-solid reaction. ▶ Gradient component distribution of the film was achieved by the in-situ process. ▶ The symmetry of the parts of the sodium battery to be sealed was realized. ▶ Reliability of the seal was substantially improved by the symmetrical design.

Electrical conductivity of Gd-doped ceria film fabricated by aerosol deposition method

Original Research Article

Pages 16-21

Highlights

▶ GDC films were deposited on various substrates using aerosol deposition (AD) method. ▶ The conductivity of GDC film on sapphire was comparable to that of a bulk sample. ▶ The Po_2 dependence was similar to that of GDC at higher temperature. ▶ The film fabricated by AD method may be used as an electrolyte for low temperature.

New structural lithium battery electrolytes using thiol-ene chemistry

Original Research Article

Pages 22-29

Markus Willgert, Maria H. Kjell, Göran Lindbergh, Mats Johansson

Highlights

► Solid PEG-methacrylate lithium ion electrolytes containing thio-ether segments ► Thiol—ene chemistry as a tool to design multifunctional electrolytes ► Mechanical performance of structural battery electrolytes

Li₄Ti₅O₁₂/Reduced Graphene Oxide composite as a high rate capability material for lithium ion batteries

Original Research Article

Pages 30-36

Qian Zhang, Wenjie Peng, Zhixing Wang, Xinhai Li, Xunhui Xiong, Huajun Guo, Zhiguo Wang, Feixiang Wu

Highlights

▶ It is the first time synthesizing $\text{Li}_4\text{Ti}_5\text{O}_{12}$ /Reduced Graphene Oxide (LTO/RGO) composite by spray-drying. ▶ The network of RGO wrapping on $\text{Li}_4\text{Ti}_5\text{O}_{12}$ particles created a synergetic effect. ▶ The composite presented excellent rate performance.

AlF_3 coated LiV_3O_8 nanosheets with significantly improved cycling stability as cathode material for Li-ion battery

Original Research Article

Pages 37-42

Haiyan Wang, Yan Yu, Guanhua Jin, Yougen Tang, Suqin Liu, Dan Sun

Highlights

▶ AlF₃ was successfully coated on the surface of LiV₃O₈ nanosheets. ▶ AlF₃ coated LiV₃O₈ exhibited the significantly improved cycling stability. ▶ Electrochemical property of the coated one at elevated temperature was improved. ▶ AlF₃ layer could protect the bulk material well.

Spinel LiCrTiO₄ fibers as an advanced anode material in high performance lithium ion batteries

Original Research Article

Pages 43-47

Li Wang, Qizhen Xiao, Lijuan Wu, Gangtie Lei, Zhaohui Li

Highlights

▶ A simple electrospinning method has been developed to fabricate LiCrTiO₄ fibers. ▶ LiCrTiO₄ fibers as anode material for lithium-ion batteries ▶ A stable capacity of over 290 mAh g⁻¹ is achieved after 50 cycles at 100 mA g⁻¹. ▶ LiCrTiO₄ anode exhibits good cycle performance and high rate capability.

Structure and conductivity of rutile niobium iron titanate

Original Research Article

Pages 48-53

Peter I. Cowin, Christophe T.G. Petit, Rong Lan, Carl J. Schaschke, Shanwen Tao

Highlights

▶ A rutile solid solution FexTi_{1-2x}NbxO_{2- δ} (x<0.3) was synthesised. ▶ The conductivity of these compounds was noted to increase upon reduction. ▶ The compounds were not stable upon reduction with formation of a (Fe,Ti,Nb)₂O₃. ▶ Reduction at higher temperature causes significant increases in conductivity.

Calendar

Page 54